aboutsummaryrefslogtreecommitdiff
path: root/coqprime/num/Pock.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime/num/Pock.v')
-rw-r--r--coqprime/num/Pock.v964
1 files changed, 964 insertions, 0 deletions
diff --git a/coqprime/num/Pock.v b/coqprime/num/Pock.v
new file mode 100644
index 000000000..3b467af5a
--- /dev/null
+++ b/coqprime/num/Pock.v
@@ -0,0 +1,964 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+Require Import List.
+Require Import ZArith.
+Require Import Zorder.
+Require Import ZCAux.
+Require Import LucasLehmer.
+Require Import Pocklington.
+Require Import ZArith Znumtheory Zpow_facts.
+Require Import CyclicAxioms DoubleCyclic BigN Cyclic31 Int31.
+Require Import Pmod.
+Require Import Mod_op.
+Require Import W.
+Require Import Lucas.
+Require Export PocklingtonCertificat.
+Require Import NEll.
+Import CyclicAxioms DoubleType DoubleBase List.
+
+Open Scope Z_scope.
+
+Section test.
+
+Variable w: Type.
+Variable w_op: ZnZ.Ops w.
+Variable op_spec: ZnZ.Specs w_op.
+Variable p: positive.
+Variable b: w.
+
+Notation "[| x |]" :=
+ (ZnZ.to_Z x) (at level 0, x at level 99).
+
+Hypothesis b_pos: 0 < [|b|].
+
+Variable m_op: mod_op w.
+Variable m_op_spec: mod_spec w_op b m_op.
+
+Open Scope positive_scope.
+Open Scope P_scope.
+
+Let pow := m_op.(power_mod).
+Let times := m_op.(mul_mod).
+Let pred:= m_op.(pred_mod).
+
+(* [fold_pow_mod a [q1,_;...;qn,_]] b = a ^(q1*...*qn) mod b *)
+(* invariant a mod N = a *)
+Definition fold_pow_mod (a: w) l :=
+ fold_left
+ (fun a' (qp:positive*positive) => pow a' (fst qp))
+ l a.
+
+Lemma fold_pow_mod_spec : forall l (a:w),
+ ([|a|] < [|b|])%Z -> [|fold_pow_mod a l|] = ([|a|]^(mkProd' l) mod [|b|])%Z.
+intros l; unfold fold_pow_mod; elim l; simpl fold_left; simpl mkProd'; auto; clear l.
+intros a H; rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith.
+case (ZnZ.spec_to_Z a); auto with zarith.
+intros (p1, q1) l Rec a H.
+case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2.
+rewrite Rec.
+rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
+rewrite <- Zpower_mod.
+rewrite times_Zmult; rewrite Zpower_mult; auto with zarith.
+apply Zle_lt_trans with (2 := H); auto with zarith.
+rewrite Zmod_small; auto with zarith.
+rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+rewrite Zmod_small; auto with zarith.
+Qed.
+
+
+Fixpoint all_pow_mod (prod a: w) (l:dec_prime) {struct l}: w*w :=
+ match l with
+ | nil => (prod,a)
+ | (q,_) :: l =>
+ let m := pred (fold_pow_mod a l) in
+ all_pow_mod (times prod m) (pow a q) l
+ end.
+
+
+Lemma snd_all_pow_mod :
+ forall l (prod a :w), ([|a|] < [|b|])%Z ->
+ [|snd (all_pow_mod prod a l)|] = ([|a|]^(mkProd' l) mod [|b|])%Z.
+intros l; elim l; simpl all_pow_mod; simpl mkProd'; simpl snd; clear l.
+intros _ a H; rewrite Zpower_1_r; auto with zarith.
+rewrite Zmod_small; auto with zarith.
+case (ZnZ.spec_to_Z a); auto with zarith.
+intros (p1, q1) l Rec prod a H.
+case (ZnZ.spec_to_Z a); auto with zarith; intros U1 U2.
+rewrite Rec; auto with zarith.
+rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
+rewrite <- Zpower_mod.
+rewrite times_Zmult; rewrite Zpower_mult; auto with zarith.
+apply Zle_lt_trans with (2 := H); auto with zarith.
+rewrite Zmod_small; auto with zarith.
+rewrite m_op_spec.(power_mod_spec) with (t := [|a|]); auto with zarith.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+rewrite Zmod_small; auto with zarith.
+Qed.
+
+Lemma fold_aux : forall a N l prod,
+ (fold_left
+ (fun (r : Z) (k : positive * positive) =>
+ r * (a ^(N / fst k) - 1) mod [|b|]) l (prod mod [|b|]) mod [|b|] =
+ fold_left
+ (fun (r : Z) (k : positive * positive) =>
+ r * (a^(N / fst k) - 1)) l prod mod [|b|])%Z.
+induction l;simpl;intros.
+rewrite Zmod_mod; auto with zarith.
+rewrite <- IHl; auto with zarith.
+rewrite Zmult_mod; auto with zarith.
+rewrite Zmod_mod; auto with zarith.
+rewrite <- Zmult_mod; auto with zarith.
+Qed.
+
+Lemma fst_all_pow_mod :
+ forall l (a:w) (R:positive) (prod A :w),
+ [|prod|] = ([|prod|] mod [|b|])%Z ->
+ [|A|] = ([|a|]^R mod [|b|])%Z ->
+ [|fst (all_pow_mod prod A l)|] =
+ ((fold_left
+ (fun r (k:positive*positive) =>
+ (r * ([|a|] ^ (R* mkProd' l / (fst k)) - 1))) l [|prod|]) mod [|b|])%Z.
+intros l; elim l; simpl all_pow_mod; simpl fold_left; simpl fst;
+ auto with zarith; clear l.
+intros (p1,q1) l Rec; simpl fst.
+intros a R prod A H1 H2.
+assert (F: (0 <= [|A|] < [|b|])%Z).
+rewrite H2.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+assert (F1: ((fun x => x = x mod [|b|])%Z [|fold_pow_mod A l|])).
+rewrite Zmod_small; auto.
+rewrite fold_pow_mod_spec; auto with zarith.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+assert (F2: ((fun x => x = x mod [|b|])%Z [|pred (fold_pow_mod A l)|])).
+rewrite Zmod_small; auto.
+rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]);
+ auto with zarith.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+rewrite (Rec a (R * p1)%positive); auto with zarith.
+rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]);
+ auto with zarith.
+rewrite(fun x => m_op_spec.(pred_mod_spec) x [|x|]);
+ auto with zarith.
+rewrite fold_pow_mod_spec; auto with zarith.
+rewrite H2.
+repeat rewrite Zpos_mult.
+repeat rewrite times_Zmult.
+repeat rewrite <- Zmult_assoc.
+apply sym_equal; rewrite <- fold_aux; auto with zarith.
+apply sym_equal; rewrite <- fold_aux; auto with zarith.
+eq_tac; auto.
+match goal with |- context[fold_left ?x _ _] =>
+ apply f_equal2 with (f := fold_left x); auto with zarith
+end.
+rewrite Zmod_mod; auto with zarith.
+rewrite (Zmult_comm R); repeat rewrite <- Zmult_assoc;
+ rewrite (Zmult_comm p1); rewrite Z_div_mult; auto with zarith.
+repeat rewrite (Zmult_mod [|prod|]);auto with zmisc.
+eq_tac; [idtac | eq_tac]; auto.
+eq_tac; auto.
+rewrite Zmod_mod; auto.
+repeat rewrite (fun x => Zminus_mod x 1); auto with zarith.
+eq_tac; auto; eq_tac; auto.
+rewrite Zmult_comm; rewrite <- Zpower_mod; auto with zmisc.
+rewrite Zpower_mult; auto with zarith.
+rewrite Zmod_mod; auto with zarith.
+rewrite Zmod_small; auto.
+rewrite(fun x y => m_op_spec.(mul_mod_spec) x y [|x|] [|y|]);
+ auto with zarith.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
+ auto with zarith.
+apply trans_equal with ([|A|] ^ p1 mod [|b|])%Z; auto.
+rewrite H2.
+rewrite Zpos_mult_morphism; rewrite Zpower_mult; auto with zarith.
+rewrite <- Zpower_mod; auto with zarith.
+rewrite Zmod_small; auto.
+Qed.
+
+
+Fixpoint pow_mod_pred (a:w) (l:dec_prime) {struct l} : w :=
+ match l with
+ | nil => a
+ | (q, p)::l =>
+ if (p ?= 1) then pow_mod_pred a l
+ else
+ let a' := iter_pos (Ppred p) _ (fun x => pow x q) a in
+ pow_mod_pred a' l
+ end.
+
+Lemma iter_pow_mod_spec : forall q p a, [|a|] = ([|a|] mod [|b|])%Z ->
+ ([|iter_pos p _ (fun x => pow x q) a|] = [|a|]^q^p mod [|b|])%Z.
+intros q1 p1; elim p1; simpl iter_pos; clear p1.
+intros p1 Rec a Ha.
+rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
+ auto with zarith.
+repeat rewrite Rec; auto with zarith.
+match goal with |- (Zpower_pos ?X ?Y mod ?Z = _)%Z =>
+ apply trans_equal with (X ^ Y mod Z)%Z; auto
+end.
+repeat rewrite <- Zpower_mod; auto with zmisc.
+repeat rewrite <- Zpower_mult; auto with zmisc.
+repeat rewrite <- Zpower_mod; auto with zmisc.
+repeat rewrite <- Zpower_mult; auto with zarith zmisc.
+eq_tac; auto.
+eq_tac; auto.
+rewrite Zpos_xI.
+assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp;
+ clear tmp.
+repeat rewrite Zpower_exp; auto with zarith.
+rewrite Zpower_1_r; try ring; auto with misc.
+rewrite Zmod_mod; auto with zarith.
+rewrite Rec; auto with zmisc.
+rewrite Zmod_mod; auto with zarith.
+rewrite Rec; auto with zmisc.
+rewrite Zmod_mod; auto with zarith.
+intros p1 Rec a Ha.
+repeat rewrite Rec; auto with zarith.
+repeat rewrite <- Zpower_mod; auto with zmisc.
+repeat rewrite <- Zpower_mult; auto with zmisc.
+eq_tac; auto.
+eq_tac; auto.
+rewrite Zpos_xO.
+assert (tmp: forall x, (2 * x = x + x)%Z); auto with zarith; rewrite tmp;
+ clear tmp.
+repeat rewrite Zpower_exp; auto with zarith.
+rewrite Zmod_mod; auto with zarith.
+intros a Ha; rewrite Zpower_1_r; auto with zarith.
+rewrite(fun x => m_op_spec.(power_mod_spec) x [|x|]);
+ auto with zarith.
+Qed.
+
+Lemma pow_mod_pred_spec : forall l a,
+ ([|a|] = [|a|] mod [|b|] ->
+ [|pow_mod_pred a l|] = [|a|]^(mkProd_pred l) mod [|b|])%Z.
+intros l; elim l; simpl pow_mod_pred; simpl mkProd_pred; clear l.
+intros; rewrite Zpower_1_r; auto with zarith.
+intros (p1,q1) l Rec a H; simpl snd; simpl fst.
+case (q1 ?= 1)%P; auto with zarith.
+rewrite Rec; auto.
+rewrite iter_pow_mod_spec; auto with zarith.
+rewrite times_Zmult; rewrite pow_Zpower.
+rewrite <- Zpower_mod; auto with zarith.
+rewrite Zpower_mult; auto with zarith.
+rewrite Zmod_small; auto with zarith.
+rewrite iter_pow_mod_spec; auto with zarith.
+match goal with |- context[(?X mod ?Y)%Z] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+Qed.
+
+End test.
+
+Require Import Bits.
+
+Definition test_pock N a dec sqrt :=
+ if (2 ?< N) then
+ let Nm1 := Ppred N in
+ let F1 := mkProd dec in
+ match (Nm1 / F1)%P with
+ | (Npos R1, N0) =>
+ if is_odd R1 then
+ if is_even F1 then
+ if (1 ?< a) then
+ let (s,r') := (R1 / (xO F1))%P in
+ match r' with
+ | Npos r =>
+ if (a ?< N) then
+ let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
+ let wN := znz_of_Z op (Zpos N) in
+ let wa := znz_of_Z op (Zpos a) in
+ let w1 := znz_of_Z op 1 in
+ let mod_op := make_mod_op op wN in
+ let pow := mod_op.(power_mod) in
+ let ttimes := mod_op.(mul_mod) in
+ let pred:= mod_op.(pred_mod) in
+ let gcd:= ZnZ.gcd in
+ let A := pow_mod_pred _ mod_op (pow wa R1) dec in
+ match all_pow_mod _ mod_op w1 A dec with
+ | (p, aNm1) =>
+ match ZnZ.to_Z aNm1 with
+ (Zpos xH) =>
+ match ZnZ.to_Z (gcd p wN) with
+ (Zpos xH) =>
+ if check_s_r s r sqrt then
+ (N ?< (times ((times ((xO F1)+r+1) F1) + r) F1) + 1)
+ else false
+ | _ => false
+ end
+ | _ => false
+ end
+ end else false
+ | _ => false
+ end
+ else false
+ else false
+ else false
+ | _=> false
+ end
+ else false.
+
+Lemma test_pock_correct : forall N a dec sqrt,
+ (forall k, In k dec -> prime (Zpos (fst k))) ->
+ test_pock N a dec sqrt = true ->
+ prime N.
+unfold test_pock;intros N a dec sqrt H.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If1; auto
+end.
+2: intros; discriminate.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+generalize (div_eucl_spec (Ppred N) (mkProd dec));
+ destruct ((Ppred N) / (mkProd dec))%P as (R1,n).
+simpl fst; simpl snd; intros (H1, H2).
+destruct R1 as [ |R1].
+intros; discriminate.
+destruct n.
+2: intros; discriminate.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If2; auto
+end.
+assert (If0: Zodd R1).
+apply is_odd_Zodd; auto.
+clear If2; rename If0 into If2.
+2: intros; discriminate.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If3; auto
+end.
+assert (If0: Zeven (mkProd dec)).
+apply is_even_Zeven; auto.
+clear If3; rename If0 into If3.
+2: intros; discriminate.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If4; auto
+end.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+2: intros; discriminate.
+generalize (div_eucl_spec R1 (xO (mkProd dec)));
+ destruct ((R1 / xO (mkProd dec))%P) as (s,r'); simpl fst;
+ simpl snd; intros (H3, H4).
+destruct r' as [ |r].
+intros; discriminate.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If5; auto
+end.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+2: intros; discriminate.
+set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))).
+set (w_op := cmk_op bb).
+assert (op_spec: ZnZ.Specs w_op).
+unfold bb, w_op; apply cmk_spec; auto.
+assert (F0: N < DoubleType.base (ZnZ.digits w_op)).
+ apply Zlt_le_trans with (1 := plength_correct N).
+ unfold w_op, DoubleType.base.
+ rewrite cmk_op_digits.
+ apply Zpower_le_monotone; split; auto with zarith.
+ generalize (get_height_correct 31 (plength N)); unfold bb.
+ set (p := plength N).
+ replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
+ ((Zpos (get_height 31 p) - 1) ); auto with zarith.
+ rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
+ rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
+ generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
+assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N).
+rewrite ZnZ.of_Z_correct; auto with zarith.
+assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)).
+rewrite F1; auto with zarith.
+assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith.
+assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a).
+rewrite ZnZ.of_Z_correct; auto with zarith.
+assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1).
+rewrite ZnZ.of_Z_correct; auto with zarith.
+assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec).
+rewrite Zpos_mult.
+rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith.
+simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus;
+ auto with zarith.
+assert (m_spec: mod_spec w_op (znz_of_Z w_op N)
+ (make_mod_op w_op (znz_of_Z w_op N))).
+apply make_mod_spec; auto with zarith.
+match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] =>
+ generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec
+ u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t);
+ generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t);
+ fold bb w_op;
+ case (all_pow_mod x y z t u); simpl fst; simpl snd
+end.
+intros prod aNm1; intros H5 H6.
+case_eq (ZnZ.to_Z aNm1).
+intros; discriminate.
+2: intros; discriminate.
+intros p; case p; clear p.
+intros; discriminate.
+intros; discriminate.
+intros If6.
+case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))).
+intros; discriminate.
+2: intros; discriminate.
+intros p; case p; clear p.
+intros; discriminate.
+intros; discriminate.
+intros If7.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If8; auto
+end.
+2: intros; discriminate.
+intros If9.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+assert (U1: N - 1 = mkProd dec * R1).
+rewrite <- Ppred_Zminus in H1; auto with zarith.
+rewrite H1; simpl.
+repeat rewrite Zpos_mult; auto with zarith.
+assert (HH:Z_of_N s = R1 / (2 * mkProd dec) /\ Zpos r = R1 mod (2 * mkProd dec)).
+apply mod_unique with (2 * mkProd dec);auto with zarith.
+apply Z_mod_lt; auto with zarith.
+rewrite <- Z_div_mod_eq; auto with zarith.
+rewrite H3.
+rewrite (Zpos_xO (mkProd dec)).
+simpl Z_of_N; ring.
+case HH; clear HH; intros HH1 HH2.
+apply PocklingtonExtra with (F1:=mkProd dec) (R1:=R1) (m:=1);
+ auto with zmisc zarith.
+case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith.
+simpl in H2; auto with zarith.
+intros HH; contradict If3; rewrite <- HH.
+apply Zodd_not_Zeven; red; auto.
+intros p; case p; clear p.
+intros HH; contradict HH.
+apply not_prime_0.
+2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
+ discriminate.
+intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
+apply trans_equal with (2 := If6).
+rewrite H5.
+rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
+rewrite F1.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+rewrite F1; rewrite F4.
+rewrite <- Zpower_mod; auto with zarith.
+rewrite <- Zpower_mult; auto with zarith.
+rewrite mkProd_pred_mkProd; auto with zarith.
+rewrite U1; rewrite Zmult_comm.
+rewrite Zpower_mult; auto with zarith.
+rewrite <- Zpower_mod; auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
+rewrite Zmod_small; auto with zarith.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
+rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+rewrite Zmod_small; auto with zarith.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
+match type of H6 with _ -> _ -> ?X =>
+ assert (tmp: X); [apply H6 | clear H6; rename tmp into H6];
+ auto with zarith
+end.
+rewrite F1.
+change (znz_of_Z w_op 1) with (ZnZ.of_Z 1).
+rewrite F5; rewrite Zmod_small; auto with zarith.
+rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4).
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4).
+rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith.
+rewrite Zpower_mult; auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4).
+rewrite Zmod_small; auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4).
+rewrite Zmod_small; auto with zarith.
+rewrite (power_mod_spec m_spec) with (t := a); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4); auto.
+rewrite Zmod_small; auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N); auto.
+auto with zarith.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6.
+change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6.
+rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6.
+case in_mkProd_prime_div_in with (3 := Hdec); auto.
+intros p1 Hp1.
+rewrite <- F6 in H6.
+apply Zis_gcd_gcd; auto with zarith.
+change (rel_prime (a ^ ((N - 1) / p) - 1) N).
+match type of H6 with _ = ?X mod _ =>
+ apply rel_prime_div with (p := X); auto with zarith
+end.
+apply rel_prime_mod_rev; auto with zarith.
+red.
+pattern 1 at 4; rewrite <- If7; rewrite <- H6.
+pattern N at 2; rewrite <- F1.
+apply ZnZ.spec_gcd; auto with zarith.
+assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b,
+ In b l -> (forall x, P (f x b)) ->
+ (forall x y, P x -> P (f x y)) ->
+ P (fold_left f l a)).
+assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a,
+ P a ->
+ (forall x y, P x -> P (f x y)) ->
+ P (fold_left f l a)).
+intros A B f P l; elim l; simpl; auto.
+intros A B f P l; elim l; simpl; auto.
+intros a1 b HH; case HH.
+intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
+apply foldtmp0; auto.
+apply Rec with (b := b); auto with zarith.
+match goal with |- context [fold_left ?f _ _] =>
+ apply (foldtmp _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k))
+ with (b := (p, p1)); auto with zarith
+end.
+rewrite <- HH2.
+clear F0; match goal with H: ?X < ?Y |- ?X < ?Z =>
+ replace Z with Y; auto
+end.
+repeat (rewrite Zpos_plus || rewrite Zpos_mult || rewrite times_Zmult).
+rewrite Zpos_xO; ring.
+rewrite <- HH1; rewrite <- HH2.
+apply check_s_r_correct with sqrt; auto.
+Qed.
+
+(* Simple version of pocklington for primo *)
+Definition test_spock N a dec :=
+ if (2 ?< N) then
+ let Nm1 := Ppred N in
+ let F1 := mkProd dec in
+ match (Nm1 / F1)%P with
+ | (Npos R1, N0) =>
+ if (1 ?< a) then
+ if (a ?< N) then
+ if (N ?< F1 * F1) then
+ let op := cmk_op (Peano.pred (nat_of_P (get_height 31 (plength N)))) in
+ let wN := znz_of_Z op (Zpos N) in
+ let wa := znz_of_Z op (Zpos a) in
+ let w1 := znz_of_Z op 1 in
+ let mod_op := make_mod_op op wN in
+ let pow := mod_op.(power_mod) in
+ let ttimes := mod_op.(mul_mod) in
+ let pred:= mod_op.(pred_mod) in
+ let gcd:= ZnZ.gcd in
+ let A := pow_mod_pred _ mod_op (pow wa R1) dec in
+ match all_pow_mod _ mod_op w1 A dec with
+ | (p, aNm1) =>
+ match ZnZ.to_Z aNm1 with
+ (Zpos xH) =>
+ match ZnZ.to_Z (gcd p wN) with
+ (Zpos xH) => true
+ | _ => false
+ end
+ | _ => false
+ end
+ end else false
+ else false
+ else false
+ | _=> false
+ end
+ else false.
+
+Lemma test_spock_correct : forall N a dec,
+ (forall k, In k dec -> prime (Zpos (fst k))) ->
+ test_spock N a dec = true ->
+ prime N.
+unfold test_spock;intros N a dec H.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If1; auto
+end.
+2: intros; discriminate.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+generalize (div_eucl_spec (Ppred N) (mkProd dec));
+ destruct ((Ppred N) / (mkProd dec))%P as (R1,n).
+simpl fst; simpl snd; intros (H1, H2).
+destruct R1 as [ |R1].
+intros; discriminate.
+destruct n.
+2: intros; discriminate.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If2; auto
+end.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+2: intros; discriminate.
+(*
+set (bb := pred (nat_of_P (get_height 31 (plength N)))).
+set (w_op := cmk_op bb).
+assert (op_spec: znz_spec w_op).
+unfold bb, w_op; apply cmk_spec; auto.
+assert (F0: N < Basic_type.base (znz_digits w_op)).
+ apply Zlt_le_trans with (1 := plength_correct N).
+ unfold w_op, Basic_type.base.
+ rewrite cmk_op_digits.
+ apply Zpower_le_monotone; split; auto with zarith.
+ generalize (get_height_correct 31 (plength N)); unfold bb.
+ set (p := plength N).
+ replace (Z_of_nat (pred (nat_of_P (get_height 31 p)))) with
+ ((Zpos (get_height 31 p) - 1) ); auto with zarith.
+ rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
+ rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
+ generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
+*)
+set (bb := Peano.pred (nat_of_P (get_height 31 (plength N)))).
+set (w_op := cmk_op bb).
+assert (op_spec: ZnZ.Specs w_op).
+unfold bb, w_op; apply cmk_spec; auto.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If3; auto
+end.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+match goal with |- context[if ?x then _ else _] =>
+ case_eq x; intros If4; auto
+end.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+assert (F0: N < DoubleType.base (ZnZ.digits w_op)).
+ apply Zlt_le_trans with (1 := plength_correct N).
+ unfold w_op, DoubleType.base.
+ rewrite cmk_op_digits.
+ apply Zpower_le_monotone; split; auto with zarith.
+ generalize (get_height_correct 31 (plength N)); unfold bb.
+ set (p := plength N).
+ replace (Z_of_nat (Peano.pred (nat_of_P (get_height 31 p)))) with
+ ((Zpos (get_height 31 p) - 1) ); auto with zarith.
+ rewrite pred_of_minus; rewrite inj_minus1; auto with zarith.
+ rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto with zarith.
+ generalize (lt_O_nat_of_P (get_height 31 p)); auto with zarith.
+assert (F1: ZnZ.to_Z (ZnZ.of_Z N) = N).
+rewrite ZnZ.of_Z_correct; auto with zarith.
+assert (F2: 1 < ZnZ.to_Z (ZnZ.of_Z N)).
+rewrite F1; auto with zarith.
+assert (F3: 0 < ZnZ.to_Z (ZnZ.of_Z N)); auto with zarith.
+assert (F4: ZnZ.to_Z (ZnZ.of_Z a) = a).
+rewrite ZnZ.of_Z_correct; auto with zarith.
+assert (F5: ZnZ.to_Z (ZnZ.of_Z 1) = 1).
+rewrite ZnZ.of_Z_correct; auto with zarith.
+assert (F6: N - 1 = (R1 * mkProd_pred dec)%positive * mkProd' dec).
+rewrite Zpos_mult.
+rewrite <- Zmult_assoc; rewrite mkProd_pred_mkProd; auto with zarith.
+simpl in H1; rewrite Zpos_mult in H1; rewrite <- H1; rewrite Ppred_Zminus;
+ auto with zarith.
+assert (m_spec: mod_spec w_op (znz_of_Z w_op N)
+ (make_mod_op w_op (znz_of_Z w_op N))).
+apply make_mod_spec; auto with zarith.
+match goal with |- context[all_pow_mod ?x ?y ?z ?t ?u] =>
+ generalize (fst_all_pow_mod x w_op op_spec _ F3 _ m_spec
+ u (znz_of_Z w_op a) (R1*mkProd_pred dec) z t);
+ generalize (snd_all_pow_mod x w_op op_spec _ F3 _ m_spec u z t);
+ fold bb w_op;
+ case (all_pow_mod x y z t u); simpl fst; simpl snd
+end.
+2: intros; discriminate.
+intros prod aNm1; intros H5 H6.
+case_eq (ZnZ.to_Z aNm1).
+intros; discriminate.
+2: intros; discriminate.
+intros p; case p; clear p.
+intros; discriminate.
+intros; discriminate.
+intros If5.
+case_eq (ZnZ.to_Z (ZnZ.gcd prod (znz_of_Z w_op N))).
+intros; discriminate.
+2: intros; discriminate.
+intros p; case p; clear p.
+intros; discriminate.
+intros; discriminate.
+intros If6 _.
+assert (U1: N - 1 = mkProd dec * R1).
+rewrite <- Ppred_Zminus in H1; auto with zarith.
+rewrite H1; simpl.
+repeat rewrite Zpos_mult; auto with zarith.
+apply PocklingtonCorollary1 with (F1:=mkProd dec) (R1:=R1);
+ auto with zmisc zarith.
+case (Zle_lt_or_eq 1 (mkProd dec)); auto with zarith.
+simpl in H2; auto with zarith.
+intros HH; contradict If4; rewrite Zpos_mult_morphism;
+ rewrite <- HH.
+apply Zle_not_lt; auto with zarith.
+intros p; case p; clear p.
+intros HH; contradict HH.
+apply not_prime_0.
+2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
+ discriminate.
+intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
+apply trans_equal with (2 := If5).
+rewrite H5.
+rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
+rewrite F1.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+rewrite F1; rewrite F4.
+rewrite <- Zpower_mod; auto with zarith.
+rewrite <- Zpower_mult; auto with zarith.
+rewrite mkProd_pred_mkProd; auto with zarith.
+rewrite U1; rewrite Zmult_comm.
+rewrite Zpower_mult; auto with zarith.
+rewrite <- Zpower_mod; auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+rewrite Zmod_small; auto with zarith.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
+rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+rewrite Zmod_small; auto with zarith.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+rewrite F1; rewrite F4; rewrite Zmod_small; auto with zarith.
+match type of H6 with _ -> _ -> ?X =>
+ assert (tmp: X); [apply H6 | clear H6; rename tmp into H6];
+ auto with zarith
+end.
+rewrite F1.
+change (znz_of_Z w_op 1) with (ZnZ.of_Z 1).
+rewrite F5; rewrite Zmod_small; auto with zarith.
+rewrite pow_mod_pred_spec with (2 := m_spec); auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+repeat (rewrite F1 || rewrite F4).
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4).
+rewrite Zpos_mult; rewrite <- Zpower_mod; auto with zarith.
+rewrite Zpower_mult; auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+repeat (rewrite F1 || rewrite F4).
+rewrite Zmod_small; auto with zarith.
+rewrite Zmod_small; auto with zarith.
+rewrite m_spec.(power_mod_spec) with (t := a); auto with zarith.
+match goal with |- context[?X mod ?Y] =>
+ case (Z_mod_lt X Y); auto with zarith
+end.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N).
+change (znz_of_Z w_op a) with (ZnZ.of_Z a).
+repeat (rewrite F1 || rewrite F4).
+rewrite Zmod_small; auto with zarith.
+change (znz_of_Z w_op N) with (ZnZ.of_Z N) in H6.
+change (znz_of_Z w_op a) with (ZnZ.of_Z a) in H6.
+change (znz_of_Z w_op 1) with (ZnZ.of_Z 1) in H6.
+rewrite F5 in H6; rewrite F1 in H6; rewrite F4 in H6.
+case in_mkProd_prime_div_in with (3 := Hdec); auto.
+intros p1 Hp1.
+rewrite <- F6 in H6.
+apply Zis_gcd_gcd; auto with zarith.
+change (rel_prime (a ^ ((N - 1) / p) - 1) N).
+match type of H6 with _ = ?X mod _ =>
+ apply rel_prime_div with (p := X); auto with zarith
+end.
+apply rel_prime_mod_rev; auto with zarith.
+red.
+pattern 1 at 4; rewrite <- If6; rewrite <- H6.
+pattern N at 2; rewrite <- F1.
+apply ZnZ.spec_gcd; auto with zarith.
+assert (foldtmp: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a b,
+ In b l -> (forall x, P (f x b)) ->
+ (forall x y, P x -> P (f x y)) ->
+ P (fold_left f l a)).
+assert (foldtmp0: forall (A B: Set) (f: A -> B -> A) (P: A -> Prop) l a,
+ P a ->
+ (forall x y, P x -> P (f x y)) ->
+ P (fold_left f l a)).
+intros A B f P l; elim l; simpl; auto.
+intros A B f P l; elim l; simpl; auto.
+intros a1 b HH; case HH.
+intros a1 l1 Rec a2 b [V|V] V1 V2; subst; auto.
+apply foldtmp0; auto.
+apply Rec with (b := b); auto with zarith.
+match goal with |- context [fold_left ?f _ _] =>
+ apply (foldtmp _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k))
+ with (b := (p, p1)); auto with zarith
+end.
+intros; discriminate.
+Qed.
+
+Fixpoint test_Certif (lc : Certif) : bool :=
+ match lc with
+ | nil => true
+ | (Proof_certif _ _) :: lc => test_Certif lc
+ | (Lucas_certif n p) :: lc =>
+ let xx := test_Certif lc in
+ if xx then
+ let yy := gt2 p in
+ if yy then
+ match p with
+ Zpos p1 =>
+ let zz := Mp p in
+ match zz with
+ | Zpos n' =>
+ if (n ?= n')%P then
+ let tt := lucas p1 in
+ match tt with
+ | Z0 => true
+ | _ => false
+ end
+ else false
+ | _ => false
+ end
+ | _ => false
+ end
+ else false
+ else false
+ | (Pock_certif n a dec sqrt) :: lc =>
+ let xx := test_pock n a dec sqrt in
+ if xx then
+ let yy := all_in lc dec in
+ (if yy then test_Certif lc else false)
+ else false
+ | (SPock_certif n a dec) :: lc =>
+ let xx :=test_spock n a dec in
+ if xx then
+ let yy := all_in lc dec in
+ (if yy then test_Certif lc else false)
+ else false
+ | (Ell_certif n ss l a b x y) :: lc =>
+ let xx := ell_test n ss l a b x y in
+ if xx then
+ let yy := all_in lc l in
+ if yy then test_Certif lc else false
+ else false
+ end.
+
+Lemma test_Certif_In_Prime :
+ forall lc, test_Certif lc = true ->
+ forall c, In c lc -> prime (nprim c).
+intros lc; elim lc; simpl; auto.
+intros _ c H; case H.
+intros a; case a; simpl; clear a lc.
+intros N p l Rec H c [H1 | H1]; subst; auto with arith.
+intros n p l; case (test_Certif l); auto with zarith.
+2: intros; discriminate.
+intros H H1 c [H2 | H2]; subst; auto with arith.
+simpl nprim.
+generalize H1; clear H1.
+case_eq (gt2 p).
+2: intros; discriminate.
+case p; clear p; try (intros; discriminate; fail).
+unfold gt2; intros p H1.
+match goal with H: (?X ?< ?Y) = true |- _ =>
+ generalize (is_lt_spec X Y); rewrite H; clear H; intros H
+end.
+unfold Mp; case_eq (2 ^ p -1); try (intros; discriminate; fail).
+intros p1 Hp1.
+case_eq (n ?= p1)%P; try rewrite <- Hp1.
+2: intros; discriminate.
+intros H2.
+match goal with H: (?X ?= ?Y)%P = true |- _ =>
+ generalize (is_eq_eq _ _ H); clear H; intros H
+end.
+generalize (lucas_prime H1); rewrite Hp1; rewrite <- H2.
+case (lucas p); try (intros; discriminate; fail); auto.
+intros N a d p l H.
+generalize (test_pock_correct N a d p).
+case (test_pock N a d p); auto.
+2: intros; discriminate.
+generalize (all_in_In l d).
+case (all_in l d).
+2: intros; discriminate.
+intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto.
+apply H2; auto.
+intros k Hk.
+case H1 with (2 := Hk); auto.
+intros x (Hx1, Hx2); rewrite Hx2; auto.
+intros N a d l H.
+generalize (test_spock_correct N a d).
+case test_spock; auto.
+2: intros; discriminate.
+generalize (all_in_In l d).
+case (all_in l d).
+2: intros; discriminate.
+intros H1 H2 H3 c [H4 | H4]; subst; simpl; auto.
+apply H2; auto.
+intros k Hk.
+case H1 with (2 := Hk); auto.
+intros x (Hx1, Hx2); rewrite Hx2; auto.
+intros N S l A B x y l1.
+generalize (all_in_In l1 l).
+generalize (ell_test_correct N S l A B x y).
+case ell_test.
+case all_in; auto.
+intros H1 H2 H3 H4 c [H5 | H5]; try subst c; simpl; auto.
+apply H1.
+intros p Hp; case (H2 (refl_equal true) p); auto.
+intros x1 (Hx1, Hx2); rewrite Hx2; auto.
+intros; discriminate.
+intros; discriminate.
+Qed.
+
+Lemma Pocklington_refl :
+ forall c lc, test_Certif (c::lc) = true -> prime (nprim c).
+Proof.
+ intros c lc Heq;apply test_Certif_In_Prime with (c::lc);trivial;simpl;auto.
+Qed.
+