aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/ZSum.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime-8.4/Coqprime/ZSum.v')
-rw-r--r--coqprime-8.4/Coqprime/ZSum.v335
1 files changed, 335 insertions, 0 deletions
diff --git a/coqprime-8.4/Coqprime/ZSum.v b/coqprime-8.4/Coqprime/ZSum.v
new file mode 100644
index 000000000..907720f7c
--- /dev/null
+++ b/coqprime-8.4/Coqprime/ZSum.v
@@ -0,0 +1,335 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+(***********************************************************************
+ Summation.v from Z to Z
+ *********************************************************************)
+Require Import Coq.Arith.Arith.
+Require Import Coq.setoid_ring.ArithRing.
+Require Import Coqprime.ListAux.
+Require Import Coq.ZArith.ZArith.
+Require Import Coqprime.Iterator.
+Require Import Coqprime.ZProgression.
+
+
+Open Scope Z_scope.
+(* Iterated Sum *)
+
+Definition Zsum :=
+ fun n m f =>
+ if Zle_bool n m
+ then iter 0 f Zplus (progression Zsucc n (Zabs_nat ((1 + m) - n)))
+ else iter 0 f Zplus (progression Zpred n (Zabs_nat ((1 + n) - m))).
+Hint Unfold Zsum .
+
+Lemma Zsum_nn: forall n f, Zsum n n f = f n.
+intros n f; unfold Zsum; rewrite Zle_bool_refl.
+replace ((1 + n) - n) with 1; auto with zarith.
+simpl; ring.
+Qed.
+
+Theorem permutation_rev: forall (A:Set) (l : list A), permutation (rev l) l.
+intros a l; elim l; simpl; auto.
+intros a1 l1 Hl1.
+apply permutation_trans with (cons a1 (rev l1)); auto.
+change (permutation (rev l1 ++ (a1 :: nil)) (app (cons a1 nil) (rev l1))); auto.
+Qed.
+
+Lemma Zsum_swap: forall (n m : Z) (f : Z -> Z), Zsum n m f = Zsum m n f.
+intros n m f; unfold Zsum.
+generalize (Zle_cases n m) (Zle_cases m n); case (Zle_bool n m);
+ case (Zle_bool m n); auto with arith.
+intros; replace n with m; auto with zarith.
+3:intros H1 H2; contradict H2; auto with zarith.
+intros H1 H2; apply iter_permutation; auto with zarith.
+apply permutation_trans
+ with (rev (progression Zsucc n (Zabs_nat ((1 + m) - n)))).
+apply permutation_sym; apply permutation_rev.
+rewrite Zprogression_opp; auto with zarith.
+replace (n + Z_of_nat (pred (Zabs_nat ((1 + m) - n)))) with m; auto.
+replace (Zabs_nat ((1 + m) - n)) with (S (Zabs_nat (m - n))); auto with zarith.
+simpl.
+rewrite inj_Zabs_nat; auto with zarith.
+rewrite Zabs_eq; auto with zarith.
+replace ((1 + m) - n) with (1 + (m - n)); auto with zarith.
+cut (0 <= m - n); auto with zarith; unfold Zabs_nat.
+case (m - n); auto with zarith.
+intros p; case p; simpl; auto with zarith.
+intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
+ rewrite nat_of_P_succ_morphism.
+simpl; repeat rewrite plus_0_r.
+repeat rewrite <- plus_n_Sm; simpl; auto.
+intros p H3; contradict H3; auto with zarith.
+intros H1 H2; apply iter_permutation; auto with zarith.
+apply permutation_trans
+ with (rev (progression Zsucc m (Zabs_nat ((1 + n) - m)))).
+rewrite Zprogression_opp; auto with zarith.
+replace (m + Z_of_nat (pred (Zabs_nat ((1 + n) - m)))) with n; auto.
+replace (Zabs_nat ((1 + n) - m)) with (S (Zabs_nat (n - m))); auto with zarith.
+simpl.
+rewrite inj_Zabs_nat; auto with zarith.
+rewrite Zabs_eq; auto with zarith.
+replace ((1 + n) - m) with (1 + (n - m)); auto with zarith.
+cut (0 <= n - m); auto with zarith; unfold Zabs_nat.
+case (n - m); auto with zarith.
+intros p; case p; simpl; auto with zarith.
+intros p1 Hp1; rewrite nat_of_P_xO; rewrite nat_of_P_xI;
+ rewrite nat_of_P_succ_morphism.
+simpl; repeat rewrite plus_0_r.
+repeat rewrite <- plus_n_Sm; simpl; auto.
+intros p H3; contradict H3; auto with zarith.
+apply permutation_rev.
+Qed.
+
+Lemma Zsum_split_up:
+ forall (n m p : Z) (f : Z -> Z),
+ ( n <= m < p ) -> Zsum n p f = Zsum n m f + Zsum (m + 1) p f.
+intros n m p f [H H0].
+case (Zle_lt_or_eq _ _ H); clear H; intros H.
+unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
+assert (H1: n < p).
+apply Zlt_trans with ( 1 := H ); auto with zarith.
+assert (H2: m < 1 + p).
+apply Zlt_trans with ( 1 := H0 ); auto with zarith.
+assert (H3: n < 1 + m).
+apply Zlt_trans with ( 1 := H ); auto with zarith.
+assert (H4: n < 1 + p).
+apply Zlt_trans with ( 1 := H1 ); auto with zarith.
+replace (Zabs_nat ((1 + p) - (m + 1)))
+ with (minus (Zabs_nat ((1 + p) - n)) (Zabs_nat ((1 + m) - n))).
+apply iter_progression_app; auto with zarith.
+apply inj_le_rev.
+(repeat rewrite inj_Zabs_nat); auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+rewrite next_n_Z; auto with zarith.
+rewrite inj_Zabs_nat; auto with zarith.
+rewrite Zabs_eq; auto with zarith.
+apply inj_eq_rev; auto with zarith.
+rewrite inj_minus1; auto with zarith.
+(repeat rewrite inj_Zabs_nat); auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+apply inj_le_rev.
+(repeat rewrite inj_Zabs_nat); auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+subst m.
+rewrite Zsum_nn; auto with zarith.
+unfold Zsum; generalize (Zle_cases n p); generalize (Zle_cases (n + 1) p);
+ case (Zle_bool n p); case (Zle_bool (n + 1) p); auto with zarith.
+intros H1 H2.
+replace (Zabs_nat ((1 + p) - n)) with (S (Zabs_nat (p - n))); auto with zarith.
+replace (n + 1) with (Zsucc n); auto with zarith.
+replace ((1 + p) - Zsucc n) with (p - n); auto with zarith.
+apply inj_eq_rev; auto with zarith.
+rewrite inj_S; (repeat rewrite inj_Zabs_nat); auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+Qed.
+
+Lemma Zsum_S_left:
+ forall (n m : Z) (f : Z -> Z), n < m -> Zsum n m f = f n + Zsum (n + 1) m f.
+intros n m f H; rewrite (Zsum_split_up n n m f); auto with zarith.
+rewrite Zsum_nn; auto with zarith.
+Qed.
+
+Lemma Zsum_S_right:
+ forall (n m : Z) (f : Z -> Z),
+ n <= m -> Zsum n (m + 1) f = Zsum n m f + f (m + 1).
+intros n m f H; rewrite (Zsum_split_up n m (m + 1) f); auto with zarith.
+rewrite Zsum_nn; auto with zarith.
+Qed.
+
+Lemma Zsum_split_down:
+ forall (n m p : Z) (f : Z -> Z),
+ ( p < m <= n ) -> Zsum n p f = Zsum n m f + Zsum (m - 1) p f.
+intros n m p f [H H0].
+case (Zle_lt_or_eq p (m - 1)); auto with zarith; intros H1.
+pattern m at 1; replace m with ((m - 1) + 1); auto with zarith.
+repeat rewrite (Zsum_swap n).
+rewrite (Zsum_swap (m - 1)).
+rewrite Zplus_comm.
+apply Zsum_split_up; auto with zarith.
+subst p.
+repeat rewrite (Zsum_swap n).
+rewrite Zsum_nn.
+unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
+replace (Zabs_nat ((1 + n) - (m - 1))) with (S (Zabs_nat (n - (m - 1)))).
+rewrite Zplus_comm.
+replace (Zabs_nat ((1 + n) - m)) with (Zabs_nat (n - (m - 1))); auto with zarith.
+pattern m at 4; replace m with (Zsucc (m - 1)); auto with zarith.
+apply f_equal with ( f := Zabs_nat ); auto with zarith.
+apply inj_eq_rev; auto with zarith.
+rewrite inj_S.
+(repeat rewrite inj_Zabs_nat); auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+Qed.
+
+
+Lemma Zsum_ext:
+ forall (n m : Z) (f g : Z -> Z),
+ n <= m ->
+ (forall (x : Z), ( n <= x <= m ) -> f x = g x) -> Zsum n m f = Zsum n m g.
+intros n m f g HH H.
+unfold Zsum; auto.
+unfold Zsum; (repeat rewrite Zle_imp_le_bool); auto with zarith.
+apply iter_ext; auto with zarith.
+intros a H1; apply H; auto; split.
+apply Zprogression_le_init with ( 1 := H1 ).
+cut (a < Zsucc m); auto with zarith.
+replace (Zsucc m) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
+apply Zprogression_le_end; auto with zarith.
+rewrite inj_Zabs_nat; auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+Qed.
+
+Lemma Zsum_add:
+ forall (n m : Z) (f g : Z -> Z),
+ Zsum n m f + Zsum n m g = Zsum n m (fun (i : Z) => f i + g i).
+intros n m f g; unfold Zsum; case (Zle_bool n m); apply iter_comp;
+ auto with zarith.
+Qed.
+
+Lemma Zsum_times:
+ forall n m x f, x * Zsum n m f = Zsum n m (fun i=> x * f i).
+intros n m x f.
+unfold Zsum. case (Zle_bool n m); intros; apply iter_comp_const with (k := (fun y : Z => x * y)); auto with zarith.
+Qed.
+
+Lemma inv_Zsum:
+ forall (P : Z -> Prop) (n m : Z) (f : Z -> Z),
+ n <= m ->
+ P 0 ->
+ (forall (a b : Z), P a -> P b -> P (a + b)) ->
+ (forall (x : Z), ( n <= x <= m ) -> P (f x)) -> P (Zsum n m f).
+intros P n m f HH H H0 H1.
+unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith; apply iter_inv; auto.
+intros x H3; apply H1; auto; split.
+apply Zprogression_le_init with ( 1 := H3 ).
+cut (x < Zsucc m); auto with zarith.
+replace (Zsucc m) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
+apply Zprogression_le_end; auto with zarith.
+rewrite inj_Zabs_nat; auto with zarith.
+(repeat rewrite Zabs_eq); auto with zarith.
+Qed.
+
+
+Lemma Zsum_pred:
+ forall (n m : Z) (f : Z -> Z),
+ Zsum n m f = Zsum (n + 1) (m + 1) (fun (i : Z) => f (Zpred i)).
+intros n m f.
+unfold Zsum.
+generalize (Zle_cases n m); generalize (Zle_cases (n + 1) (m + 1));
+ case (Zle_bool n m); case (Zle_bool (n + 1) (m + 1)); auto with zarith.
+replace ((1 + (m + 1)) - (n + 1)) with ((1 + m) - n); auto with zarith.
+intros H1 H2; cut (exists c , c = Zabs_nat ((1 + m) - n) ).
+intros [c H3]; rewrite <- H3.
+generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
+intros c H n; simpl; eq_tac; auto with zarith.
+eq_tac; unfold Zpred; auto with zarith.
+replace (Zsucc (n + 1)) with (Zsucc n + 1); auto with zarith.
+exists (Zabs_nat ((1 + m) - n)); auto.
+replace ((1 + (n + 1)) - (m + 1)) with ((1 + n) - m); auto with zarith.
+intros H1 H2; cut (exists c , c = Zabs_nat ((1 + n) - m) ).
+intros [c H3]; rewrite <- H3.
+generalize n; elim c; auto with zarith; clear H1 H2 H3 c n.
+intros c H n; simpl; (eq_tac; auto with zarith).
+eq_tac; unfold Zpred; auto with zarith.
+replace (Zpred (n + 1)) with (Zpred n + 1); auto with zarith.
+unfold Zpred; auto with zarith.
+exists (Zabs_nat ((1 + n) - m)); auto.
+Qed.
+
+Theorem Zsum_c:
+ forall (c p q : Z), p <= q -> Zsum p q (fun x => c) = ((1 + q) - p) * c.
+intros c p q Hq; unfold Zsum.
+rewrite Zle_imp_le_bool; auto with zarith.
+pattern ((1 + q) - p) at 2.
+ rewrite <- Zabs_eq; auto with zarith.
+ rewrite <- inj_Zabs_nat; auto with zarith.
+cut (exists r , r = Zabs_nat ((1 + q) - p) );
+ [intros [r H1]; rewrite <- H1 | exists (Zabs_nat ((1 + q) - p))]; auto.
+generalize p; elim r; auto with zarith.
+intros n H p0; replace (Z_of_nat (S n)) with (Z_of_nat n + 1); auto with zarith.
+simpl; rewrite H; ring.
+rewrite inj_S; auto with zarith.
+Qed.
+
+Theorem Zsum_Zsum_f:
+ forall (i j k l : Z) (f : Z -> Z -> Z),
+ i <= j ->
+ k < l ->
+ Zsum i j (fun x => Zsum k (l + 1) (fun y => f x y)) =
+ Zsum i j (fun x => Zsum k l (fun y => f x y) + f x (l + 1)).
+intros; apply Zsum_ext; intros; auto with zarith.
+rewrite Zsum_S_right; auto with zarith.
+Qed.
+
+Theorem Zsum_com:
+ forall (i j k l : Z) (f : Z -> Z -> Z),
+ Zsum i j (fun x => Zsum k l (fun y => f x y)) =
+ Zsum k l (fun y => Zsum i j (fun x => f x y)).
+intros; unfold Zsum; case (Zle_bool i j); case (Zle_bool k l); apply iter_com;
+ auto with zarith.
+Qed.
+
+Theorem Zsum_le:
+ forall (n m : Z) (f g : Z -> Z),
+ n <= m ->
+ (forall (x : Z), ( n <= x <= m ) -> (f x <= g x )) ->
+ (Zsum n m f <= Zsum n m g ).
+intros n m f g Hl H.
+unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
+unfold Zsum;
+ cut
+ (forall x,
+ In x (progression Zsucc n (Zabs_nat ((1 + m) - n))) -> ( f x <= g x )).
+elim (progression Zsucc n (Zabs_nat ((1 + m) - n))); simpl; auto with zarith.
+intros x H1; apply H; split.
+apply Zprogression_le_init with ( 1 := H1 ); auto.
+cut (x < m + 1); auto with zarith.
+replace (m + 1) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
+apply Zprogression_le_end; auto with zarith.
+rewrite inj_Zabs_nat; auto with zarith.
+rewrite Zabs_eq; auto with zarith.
+Qed.
+
+Theorem iter_le:
+forall (f g: Z -> Z) l, (forall a, In a l -> f a <= g a) ->
+ iter 0 f Zplus l <= iter 0 g Zplus l.
+intros f g l; elim l; simpl; auto with zarith.
+Qed.
+
+Theorem Zsum_lt:
+ forall n m f g,
+ (forall x, n <= x -> x <= m -> f x <= g x) ->
+ (exists x, n <= x /\ x <= m /\ f x < g x) ->
+ Zsum n m f < Zsum n m g.
+intros n m f g H (d, (Hd1, (Hd2, Hd3))); unfold Zsum; rewrite Zle_imp_le_bool; auto with zarith.
+cut (In d (progression Zsucc n (Zabs_nat (1 + m - n)))).
+cut (forall x, In x (progression Zsucc n (Zabs_nat (1 + m - n)))-> f x <= g x).
+elim (progression Zsucc n (Zabs_nat (1 + m - n))); simpl; auto with zarith.
+intros a l Rec H0 [H1 | H1]; subst; auto.
+apply Zle_lt_trans with (f d + iter 0 g Zplus l); auto with zarith.
+apply Zplus_le_compat_l.
+apply iter_le; auto.
+apply Zlt_le_trans with (f a + iter 0 g Zplus l); auto with zarith.
+intros x H1; apply H.
+apply Zprogression_le_init with ( 1 := H1 ); auto.
+cut (x < m + 1); auto with zarith.
+replace (m + 1) with (n + Z_of_nat (Zabs_nat ((1 + m) - n))); auto with zarith.
+apply Zprogression_le_end with ( 1 := H1 ); auto with arith.
+rewrite inj_Zabs_nat; auto with zarith.
+rewrite Zabs_eq; auto with zarith.
+apply in_Zprogression.
+rewrite inj_Zabs_nat; auto with zarith.
+rewrite Zabs_eq; auto with zarith.
+Qed.
+
+Theorem Zsum_minus:
+ forall n m f g, Zsum n m f - Zsum n m g = Zsum n m (fun x => f x - g x).
+intros n m f g; apply trans_equal with (Zsum n m f + (-1) * Zsum n m g); auto with zarith.
+rewrite Zsum_times; rewrite Zsum_add; auto with zarith.
+Qed.