aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/PocklingtonCertificat.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime-8.4/Coqprime/PocklingtonCertificat.v')
-rw-r--r--coqprime-8.4/Coqprime/PocklingtonCertificat.v759
1 files changed, 759 insertions, 0 deletions
diff --git a/coqprime-8.4/Coqprime/PocklingtonCertificat.v b/coqprime-8.4/Coqprime/PocklingtonCertificat.v
new file mode 100644
index 000000000..fccea30b6
--- /dev/null
+++ b/coqprime-8.4/Coqprime/PocklingtonCertificat.v
@@ -0,0 +1,759 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+Require Import Coq.Lists.List.
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.ZArith.Zorder.
+Require Import Coqprime.ZCAux.
+Require Import Coqprime.LucasLehmer.
+Require Import Coqprime.Pocklington.
+Require Import Coqprime.ZCmisc.
+Require Import Coqprime.Pmod.
+
+Definition dec_prime := list (positive * positive).
+
+Inductive singleCertif : Set :=
+ | Proof_certif : forall N:positive, prime N -> singleCertif
+ | Lucas_certif : forall (n:positive) (p: Z), singleCertif
+ | Pock_certif : forall N a : positive, dec_prime -> positive -> singleCertif
+ | SPock_certif : forall N a : positive, dec_prime -> singleCertif
+ | Ell_certif: forall (N S: positive) (l: list (positive * positive))
+ (A B x y: Z), singleCertif.
+
+Definition Certif := list singleCertif.
+
+Definition nprim sc :=
+ match sc with
+ | Proof_certif n _ => n
+ | Lucas_certif n _ => n
+ | Pock_certif n _ _ _ => n
+ | SPock_certif n _ _ => n
+ | Ell_certif n _ _ _ _ _ _ => n
+
+ end.
+
+Open Scope positive_scope.
+Open Scope P_scope.
+
+Fixpoint pow (a p:positive) {struct p} : positive :=
+ match p with
+ | xH => a
+ | xO p' =>let z := pow a p' in square z
+ | xI p' => let z := pow a p' in square z * a
+ end.
+
+Definition mkProd' (l:dec_prime) :=
+ fold_right (fun (k:positive*positive) r => times (fst k) r) 1%positive l.
+
+Definition mkProd_pred (l:dec_prime) :=
+ fold_right (fun (k:positive*positive) r =>
+ if ((snd k) ?= 1)%P then r else times (pow (fst k) (Ppred (snd k))) r)
+ 1%positive l.
+
+Definition mkProd (l:dec_prime) :=
+ fold_right (fun (k:positive*positive) r => times (pow (fst k) (snd k)) r) 1%positive l.
+
+(* [pow_mod a m n] return [a^m mod n] *)
+Fixpoint pow_mod (a m n : positive) {struct m} : N :=
+ match m with
+ | xH => (a mod n)
+ | xO m' =>
+ let z := pow_mod a m' n in
+ match z with
+ | N0 => 0%N
+ | Npos z' => ((square z') mod n)
+ end
+ | xI m' =>
+ let z := pow_mod a m' n in
+ match z with
+ | N0 => 0%N
+ | Npos z' => ((square z') * a)%P mod n
+ end
+ end.
+
+Definition Npow_mod a m n :=
+ match a with
+ | N0 => 0%N
+ | Npos a => pow_mod a m n
+ end.
+
+(* [fold_pow_mod a [q1,_;...;qn,_]] b = a ^(q1*...*qn) mod b *)
+(* invariant a mod N = a *)
+Definition fold_pow_mod a l n :=
+ fold_left
+ (fun a' (qp:positive*positive) => Npow_mod a' (fst qp) n)
+ l a.
+
+Definition times_mod x y n :=
+ match x, y with
+ | N0, _ => N0
+ | _, N0 => N0
+ | Npos x, Npos y => ((x * y)%P mod n)
+ end.
+
+Definition Npred_mod p n :=
+ match p with
+ | N0 => Npos (Ppred n)
+ | Npos p =>
+ if (p ?= 1) then N0
+ else Npos (Ppred p)
+ end.
+
+Fixpoint all_pow_mod (prod a : N) (l:dec_prime) (n:positive) {struct l}: N*N :=
+ match l with
+ | nil => (prod,a)
+ | (q,_) :: l =>
+ let m := Npred_mod (fold_pow_mod a l n) n in
+ all_pow_mod (times_mod prod m n) (Npow_mod a q n) l n
+ end.
+
+Fixpoint pow_mod_pred (a:N) (l:dec_prime) (n:positive) {struct l} : N :=
+ match l with
+ | nil => a
+ | (q,p)::l =>
+ if (p ?= 1) then pow_mod_pred a l n
+ else
+ let a' := iter_pos (Ppred p) _ (fun x => Npow_mod x q n) a in
+ pow_mod_pred a' l n
+ end.
+
+Definition is_odd p :=
+ match p with
+ | xO _ => false
+ | _ => true
+ end.
+
+Definition is_even p :=
+ match p with
+ | xO _ => true
+ | _ => false
+ end.
+
+Definition check_s_r s r sqrt :=
+ match s with
+ | N0 => true
+ | Npos p =>
+ match (Zminus (square r) (xO (xO (xO p)))) with
+ | Zpos x =>
+ let sqrt2 := square sqrt in
+ let sqrt12 := square (Psucc sqrt) in
+ if sqrt2 ?< x then x ?< sqrt12
+ else false
+ | Zneg _ => true
+ | Z0 => false
+ end
+ end.
+
+Definition test_pock N a dec sqrt :=
+ if (2 ?< N) then
+ let Nm1 := Ppred N in
+ let F1 := mkProd dec in
+ match Nm1 / F1 with
+ | (Npos R1, N0) =>
+ if is_odd R1 then
+ if is_even F1 then
+ if (1 ?< a) then
+ let (s,r') := (R1 / (xO F1))in
+ match r' with
+ | Npos r =>
+ let A := pow_mod_pred (pow_mod a R1 N) dec N in
+ match all_pow_mod 1%N A dec N with
+ | (Npos p, Npos aNm1) =>
+ if (aNm1 ?= 1) then
+ if gcd p N ?= 1 then
+ if check_s_r s r sqrt then
+ (N ?< (times ((times ((xO F1)+r+1) F1) + r) F1) + 1)
+ else false
+ else false
+ else false
+ | _ => false
+ end
+ | _ => false
+ end
+ else false
+ else false
+ else false
+ | _=> false
+ end
+ else false.
+
+Fixpoint is_in (p : positive) (lc : Certif) {struct lc} : bool :=
+ match lc with
+ | nil => false
+ | c :: l => if p ?= (nprim c) then true else is_in p l
+ end.
+
+Fixpoint all_in (lc : Certif) (lp : dec_prime) {struct lp} : bool :=
+ match lp with
+ | nil => true
+ | (p,_) :: lp =>
+ if all_in lc lp
+ then is_in p lc
+ else false
+ end.
+
+Definition gt2 n :=
+ match n with
+ | Zpos p => (2 ?< p)%positive
+ | _ => false
+ end.
+
+Fixpoint test_Certif (lc : Certif) : bool :=
+ match lc with
+ | nil => true
+ | (Proof_certif _ _) :: lc => test_Certif lc
+ | (Lucas_certif n p) :: lc =>
+ if test_Certif lc then
+ if gt2 p then
+ match Mp p with
+ | Zpos n' =>
+ if (n ?= n') then
+ match SS p with
+ | Z0 => true
+ | _ => false
+ end
+ else false
+ | _ => false
+ end
+ else false
+ else false
+ | (Pock_certif n a dec sqrt) :: lc =>
+ if test_pock n a dec sqrt then
+ if all_in lc dec then test_Certif lc else false
+ else false
+(* Shoudl be done later to do it with Z *)
+ | (SPock_certif n a dec) :: lc => false
+ | (Ell_certif _ _ _ _ _ _ _):: lc => false
+ end.
+
+Lemma pos_eq_1_spec :
+ forall p,
+ if (p ?= 1)%P then p = xH
+ else (1 < p).
+Proof.
+ unfold Zlt;destruct p;simpl; auto; red;reflexivity.
+Qed.
+
+Open Scope Z_scope.
+Lemma mod_unique : forall b q1 r1 q2 r2,
+ 0 <= r1 < b ->
+ 0 <= r2 < b ->
+ b * q1 + r1 = b * q2 + r2 ->
+ q1 = q2 /\ r1 = r2.
+Proof with auto with zarith.
+ intros b q1 r1 q2 r2 H1 H2 H3.
+ assert (r2 = (b * q1 + r1) -b*q2). rewrite H3;ring.
+ assert (b*(q2 - q1) = r1 - r2 ). rewrite H;ring.
+ assert (-b < r1 - r2 < b). omega.
+ destruct (Ztrichotomy q1 q2) as [H5 | [H5 | H5]].
+ assert (q2 - q1 >= 1). omega.
+ assert (r1- r2 >= b).
+ rewrite <- H0.
+ pattern b at 2; replace b with (b*1).
+ apply Zmult_ge_compat_l; omega. ring.
+ elimtype False; omega.
+ split;trivial. rewrite H;rewrite H5;ring.
+ assert (r1- r2 <= -b).
+ rewrite <- H0.
+ replace (-b) with (b*(-1)); try (ring;fail).
+ apply Zmult_le_compat_l; omega.
+ elimtype False; omega.
+Qed.
+
+Lemma Zge_0_pos : forall p:positive, p>= 0.
+Proof.
+ intros;unfold Zge;simpl;intro;discriminate.
+Qed.
+
+Lemma Zge_0_pos_add : forall p:positive, p+p>= 0.
+Proof.
+ intros;simpl;apply Zge_0_pos.
+Qed.
+
+Hint Resolve Zpower_gt_0 Zlt_0_pos Zge_0_pos Zlt_le_weak Zge_0_pos_add: zmisc.
+
+Hint Rewrite Zpos_mult Zpower_mult Zpower_1_r Zmod_mod Zpower_exp
+ times_Zmult square_Zmult Psucc_Zplus: zmisc.
+
+Ltac mauto :=
+ trivial;autorewrite with zmisc;trivial;auto with zmisc zarith.
+
+Lemma mod_lt : forall a (b:positive), a mod b < b.
+Proof.
+ intros a b;destruct (Z_mod_lt a b);mauto.
+Qed.
+Hint Resolve mod_lt : zmisc.
+
+Lemma Zmult_mod_l : forall (n:positive) a b, (a mod n * b) mod n = (a * b) mod n.
+Proof with mauto.
+ intros;rewrite Zmult_mod ... rewrite (Zmult_mod a) ...
+Qed.
+
+Lemma Zmult_mod_r : forall (n:positive) a b, (a * (b mod n)) mod n = (a * b) mod n.
+Proof with mauto.
+ intros;rewrite Zmult_mod ... rewrite (Zmult_mod a) ...
+Qed.
+
+Lemma Zminus_mod_l : forall (n:positive) a b, (a mod n - b) mod n = (a - b) mod n.
+Proof with mauto.
+ intros;rewrite Zminus_mod ... rewrite (Zminus_mod a) ...
+Qed.
+
+Lemma Zminus_mod_r : forall (n:positive) a b, (a - (b mod n)) mod n = (a - b) mod n.
+Proof with mauto.
+ intros;rewrite Zminus_mod ... rewrite (Zminus_mod a) ...
+Qed.
+
+Hint Rewrite Zmult_mod_l Zmult_mod_r Zminus_mod_l Zminus_mod_r : zmisc.
+Hint Rewrite <- Zpower_mod : zmisc.
+
+Lemma Pmod_Zmod : forall a b, Z_of_N (a mod b)%P = a mod b.
+Proof.
+ intros a b; rewrite Pmod_div_eucl.
+ assert (b>0). mauto.
+ unfold Zmod; assert (H1 := Z_div_mod a b H).
+ destruct (Zdiv_eucl a b) as (q2, r2).
+ assert (H2 := div_eucl_spec a b).
+ assert (Z_of_N (fst (a / b)%P) = q2 /\ Z_of_N (snd (a/b)%P) = r2).
+ destruct H1;destruct H2.
+ apply mod_unique with b;mauto.
+ split;mauto.
+ unfold Zle;destruct (snd (a / b)%P);intro;discriminate.
+ rewrite <- H0;symmetry;rewrite Zmult_comm;trivial.
+ destruct H0;auto.
+Qed.
+Hint Rewrite Pmod_Zmod : zmisc.
+
+Lemma Zpower_0 : forall p : positive, 0^p = 0.
+Proof.
+ intros;simpl;destruct p;unfold Zpower_pos;simpl;trivial.
+ generalize (iter_pos p Z (Z.mul 0) 1).
+ induction p;simpl;trivial.
+Qed.
+
+Opaque Zpower.
+Opaque Zmult.
+
+Lemma pow_Zpower : forall a p, Zpos (pow a p) = a ^ p.
+Proof with mauto.
+ induction p;simpl... rewrite IHp... rewrite IHp...
+Qed.
+Hint Rewrite pow_Zpower : zmisc.
+
+Lemma pow_mod_spec : forall n a m, Z_of_N (pow_mod a m n) = a^m mod n.
+Proof with mauto.
+ induction m;simpl;intros...
+ rewrite Zmult_mod; auto with zmisc.
+ rewrite (Zmult_mod (a^m)); auto with zmisc. rewrite <- IHm.
+ destruct (pow_mod a m n);simpl...
+ rewrite Zmult_mod; auto with zmisc.
+ rewrite <- IHm. destruct (pow_mod a m n);simpl...
+Qed.
+Hint Rewrite pow_mod_spec Zpower_0 : zmisc.
+
+Lemma Npow_mod_spec : forall a p n, Z_of_N (Npow_mod a p n) = a^p mod n.
+Proof with mauto.
+ intros a p n;destruct a;simpl ...
+Qed.
+Hint Rewrite Npow_mod_spec : zmisc.
+
+Lemma iter_Npow_mod_spec : forall n q p a,
+ Z_of_N (iter_pos p N (fun x : N => Npow_mod x q n) a) = a^q^p mod n.
+Proof with mauto.
+ induction p;simpl;intros ...
+ repeat rewrite IHp.
+ rewrite (Zpower_mod ((a ^ q ^ p) ^ q ^ p));auto with zmisc.
+ rewrite (Zpower_mod (a ^ q ^ p))...
+ repeat rewrite IHp...
+Qed.
+Hint Rewrite iter_Npow_mod_spec : zmisc.
+
+
+Lemma fold_pow_mod_spec : forall (n:positive) l (a:N),
+ Z_of_N a = a mod n ->
+ Z_of_N (fold_pow_mod a l n) = a^(mkProd' l) mod n.
+Proof with mauto.
+ unfold fold_pow_mod;induction l;simpl;intros ...
+ rewrite IHl...
+Qed.
+Hint Rewrite fold_pow_mod_spec : zmisc.
+
+Lemma pow_mod_pred_spec : forall (n:positive) l (a:N),
+ Z_of_N a = a mod n ->
+ Z_of_N (pow_mod_pred a l n) = a^(mkProd_pred l) mod n.
+Proof with mauto.
+ unfold pow_mod_pred;induction l;simpl;intros ...
+ destruct a as (q,p);simpl.
+ destruct (p ?= 1)%P; rewrite IHl...
+Qed.
+Hint Rewrite pow_mod_pred_spec : zmisc.
+
+Lemma mkProd_pred_mkProd : forall l,
+ (mkProd_pred l)*(mkProd' l) = mkProd l.
+Proof with mauto.
+ induction l;simpl;intros ...
+ generalize (pos_eq_1_spec (snd a)); destruct (snd a ?= 1)%P;intros.
+ rewrite H...
+ replace (mkProd_pred l * (fst a * mkProd' l)) with
+ (fst a *(mkProd_pred l * mkProd' l));try ring.
+ rewrite IHl...
+ rewrite Zmult_assoc. rewrite times_Zmult.
+ rewrite (Zmult_comm (pow (fst a) (Ppred (snd a)) * mkProd_pred l)).
+ rewrite Zmult_assoc. rewrite pow_Zpower. rewrite <-Ppred_Zminus;trivial.
+ rewrite <- Zpower_Zsucc; try omega.
+ replace (Zsucc (snd a - 1)) with ((snd a - 1)+1).
+ replace ((snd a - 1)+1) with (Zpos (snd a)) ...
+ rewrite <- IHl;repeat rewrite Zmult_assoc ...
+ destruct (snd a - 1);trivial.
+ assert (1 < snd a); auto with zarith.
+Qed.
+Hint Rewrite mkProd_pred_mkProd : zmisc.
+
+Lemma lt_Zmod : forall p n, 0 <= p < n -> p mod n = p.
+Proof with mauto.
+ intros a b H.
+ assert ( 0 <= a mod b < b).
+ apply Z_mod_lt...
+ destruct (mod_unique b (a/b) (a mod b) 0 a H0 H)...
+ rewrite <- Z_div_mod_eq...
+Qed.
+
+Opaque Zminus.
+Lemma Npred_mod_spec : forall p n, Z_of_N p < Zpos n ->
+ 1 < Zpos n -> Z_of_N (Npred_mod p n) = (p - 1) mod n.
+Proof with mauto.
+ destruct p;intros;simpl.
+ rewrite <- Ppred_Zminus...
+ change (-1) with (0 -1). rewrite <- (Z_mod_same n) ...
+ pattern 1 at 2;rewrite <- (lt_Zmod 1 n) ...
+ symmetry;apply lt_Zmod.
+Transparent Zminus.
+ omega.
+ assert (H1 := pos_eq_1_spec p);destruct (p?=1)%P.
+ rewrite H1 ...
+ unfold Z_of_N;rewrite <- Ppred_Zminus...
+ simpl in H;symmetry; apply (lt_Zmod (p-1) n)...
+ assert (1 < p); auto with zarith.
+Qed.
+Hint Rewrite Npred_mod_spec : zmisc.
+
+Lemma times_mod_spec : forall x y n, Z_of_N (times_mod x y n) = (x * y) mod n.
+Proof with mauto.
+ intros; destruct x ...
+ destruct y;simpl ...
+Qed.
+Hint Rewrite times_mod_spec : zmisc.
+
+Lemma snd_all_pow_mod :
+ forall n l (prod a :N),
+ a mod (Zpos n) = a ->
+ Z_of_N (snd (all_pow_mod prod a l n)) = (a^(mkProd' l)) mod n.
+Proof with mauto.
+ induction l;simpl;intros...
+ destruct a as (q,p);simpl.
+ rewrite IHl...
+Qed.
+
+Lemma fold_aux : forall a N (n:positive) l prod,
+ fold_left
+ (fun (r : Z) (k : positive * positive) =>
+ r * (a ^(N / fst k) - 1) mod n) l (prod mod n) mod n =
+ fold_left
+ (fun (r : Z) (k : positive * positive) =>
+ r * (a^(N / fst k) - 1)) l prod mod n.
+Proof with mauto.
+ induction l;simpl;intros ...
+Qed.
+
+Lemma fst_all_pow_mod :
+ forall (n a:positive) l (R:positive) (prod A :N),
+ 1 < n ->
+ Z_of_N prod = prod mod n ->
+ Z_of_N A = a^R mod n ->
+ Z_of_N (fst (all_pow_mod prod A l n)) =
+ (fold_left
+ (fun r (k:positive*positive) =>
+ (r * (a ^ (R* mkProd' l / (fst k)) - 1))) l prod) mod n.
+Proof with mauto.
+ induction l;simpl;intros...
+ destruct a0 as (q,p);simpl.
+ assert (Z_of_N A = A mod n).
+ rewrite H1 ...
+ rewrite (IHl (R * q)%positive)...
+ pattern (q * mkProd' l) at 2;rewrite (Zmult_comm q).
+ repeat rewrite Zmult_assoc.
+ rewrite Z_div_mult;auto with zmisc zarith.
+ rewrite <- fold_aux.
+ rewrite <- (fold_aux a (R * q * mkProd' l) n l (prod * (a ^ (R * mkProd' l) - 1)))...
+ assert ( ((prod * (A ^ mkProd' l - 1)) mod n) =
+ ((prod * ((a ^ R) ^ mkProd' l - 1)) mod n)).
+ repeat rewrite (Zmult_mod prod);auto with zmisc.
+ rewrite Zminus_mod;auto with zmisc.
+ rewrite (Zminus_mod ((a ^ R) ^ mkProd' l));auto with zmisc.
+ rewrite (Zpower_mod (a^R));auto with zmisc. rewrite H1...
+ rewrite H3...
+ rewrite H1 ...
+Qed.
+
+
+Lemma is_odd_Zodd : forall p, is_odd p = true -> Zodd p.
+Proof.
+ destruct p;intros;simpl;trivial;discriminate.
+Qed.
+
+Lemma is_even_Zeven : forall p, is_even p = true -> Zeven p.
+Proof.
+ destruct p;intros;simpl;trivial;discriminate.
+Qed.
+
+Lemma lt_square : forall x y, 0 < x -> x < y -> x*x < y*y.
+Proof.
+ intros; apply Zlt_trans with (x*y).
+ apply Zmult_lt_compat_l;trivial.
+ apply Zmult_lt_compat_r;trivial. omega.
+Qed.
+
+Lemma le_square : forall x y, 0 <= x -> x <= y -> x*x <= y*y.
+Proof.
+ intros; apply Zle_trans with (x*y).
+ apply Zmult_le_compat_l;trivial.
+ apply Zmult_le_compat_r;trivial. omega.
+Qed.
+
+Lemma borned_square : forall x y, 0 <= x -> 0 <= y ->
+ x*x < y*y < (x+1)*(x+1) -> False.
+Proof.
+ intros;destruct (Z_lt_ge_dec x y) as [z|z].
+ assert (x + 1 <= y). omega.
+ assert (0 <= x+1). omega.
+ assert (H4 := le_square _ _ H3 H2). omega.
+ assert (H4 := le_square _ _ H0 (Zge_le _ _ z)). omega.
+Qed.
+
+Lemma not_square : forall (sqrt:positive) n, sqrt * sqrt < n < (sqrt+1)*(sqrt + 1) -> ~(isSquare n).
+Proof.
+ intros sqrt n H (y,H0).
+ destruct (Z_lt_ge_dec 0 y).
+ apply (borned_square sqrt y);mauto.
+ assert (y*y = (-y)*(-y)). ring. rewrite H1 in H0;clear H1.
+ apply (borned_square sqrt (-y));mauto.
+Qed.
+
+Ltac spec_dec :=
+ repeat match goal with
+ | [H:(?x ?= ?y)%P = _ |- _] =>
+ generalize (is_eq_spec x y);
+ rewrite H;clear H;simpl; autorewrite with zmisc;
+ intro
+ | [H:(?x ?< ?y)%P = _ |- _] =>
+ generalize (is_lt_spec x y);
+ rewrite H; clear H;simpl; autorewrite with zmisc;
+ intro
+ end.
+
+Ltac elimif :=
+ match goal with
+ | [H: (if ?b then _ else _) = _ |- _] =>
+ let H1 := fresh "H" in
+ (CaseEq b;intros H1; rewrite H1 in H;
+ try discriminate H); elimif
+ | _ => spec_dec
+ end.
+
+Lemma check_s_r_correct : forall s r sqrt, check_s_r s r sqrt = true ->
+ Z_of_N s = 0 \/ ~ isSquare (r * r - 8 * s).
+Proof.
+ unfold check_s_r;intros.
+ destruct s as [|s]; trivial;auto.
+ right;CaseEq (square r - xO (xO (xO s)));[intros H1|intros p1 H1| intros p1 H1];
+ rewrite H1 in H;try discriminate H.
+ elimif.
+ assert (Zpos (xO (xO (xO s))) = 8 * s). repeat rewrite Zpos_xO_add;ring.
+ generalizeclear H1; rewrite H2;mauto;intros.
+ apply (not_square sqrt).
+ rewrite H1;auto.
+ intros (y,Heq).
+ generalize H1 Heq;mauto.
+ unfold Z_of_N.
+ match goal with |- ?x = _ -> ?y = _ -> _ =>
+ replace x with y; try ring
+ end.
+ intros Heq1;rewrite Heq1;intros Heq2.
+ destruct y;discriminate Heq2.
+Qed.
+
+Opaque Zplus Pplus.
+Lemma in_mkProd_prime_div_in :
+ forall p:positive, prime p ->
+ forall (l:dec_prime),
+ (forall k, In k l -> prime (fst k)) ->
+ Zdivide p (mkProd l) -> exists n,In (p, n) l.
+Proof with mauto.
+ induction l;simpl ...
+ intros _ H1; absurd (p <= 1).
+ apply Zlt_not_le; apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
+ apply Zdivide_le; auto with zarith.
+ intros; case prime_mult with (2 := H1); auto with zarith; intros H2.
+ exists (snd a);left.
+ destruct a;simpl in *.
+ assert (Zpos p = Zpos p0).
+ rewrite (prime_div_Zpower_prime p1 p p0)...
+ apply (H0 (p0,p1));auto.
+ inversion H3...
+ destruct IHl as (n,H3)...
+ exists n...
+Qed.
+
+Lemma gcd_Zis_gcd : forall a b:positive, (Zis_gcd b a (gcd b a)%P).
+Proof with mauto.
+ intros a;assert (Hacc := Zwf_pos a);induction Hacc;rename x into a;intros.
+ generalize (div_eucl_spec b a)...
+ rewrite <- (Pmod_div_eucl b a).
+ CaseEq (b mod a)%P;[intros Heq|intros r Heq]; intros (H1,H2).
+ simpl in H1;rewrite Zplus_0_r in H1.
+ rewrite (gcd_mod0 _ _ Heq).
+ constructor;mauto.
+ apply Zdivide_intro with (fst (b/a)%P);trivial.
+ rewrite (gcd_mod _ _ _ Heq).
+ rewrite H1;apply Zis_gcd_sym.
+ rewrite Zmult_comm;apply Zis_gcd_for_euclid2;simpl in *.
+ apply Zis_gcd_sym;auto.
+Qed.
+
+Lemma test_pock_correct : forall N a dec sqrt,
+ (forall k, In k dec -> prime (Zpos (fst k))) ->
+ test_pock N a dec sqrt = true ->
+ prime N.
+Proof with mauto.
+ unfold test_pock;intros.
+ elimif.
+ generalize (div_eucl_spec (Ppred N) (mkProd dec));
+ destruct ((Ppred N) / (mkProd dec))%P as (R1,n);simpl;mauto;intros (H2,H3).
+ destruct R1 as [|R1];try discriminate H0.
+ destruct n;try discriminate H0.
+ elimif.
+ generalize (div_eucl_spec R1 (xO (mkProd dec)));
+ destruct ((R1 / xO (mkProd dec))%P) as (s,r');simpl;mauto;intros (H7,H8).
+ destruct r' as [|r];try discriminate H0.
+ generalize (fst_all_pow_mod N a dec (R1*mkProd_pred dec) 1
+ (pow_mod_pred (pow_mod a R1 N) dec N)).
+ generalize (snd_all_pow_mod N dec 1 (pow_mod_pred (pow_mod a R1 N) dec N)).
+ destruct (all_pow_mod 1 (pow_mod_pred (pow_mod a R1 N) dec N) dec N) as
+ (prod,aNm1);simpl...
+ destruct prod as [|prod];try discriminate H0.
+ destruct aNm1 as [|aNm1];try discriminate H0;elimif.
+ simpl in H2;rewrite Zplus_0_r in H2.
+ rewrite <- Ppred_Zminus in H2;try omega.
+ rewrite <- Zmult_assoc;rewrite mkProd_pred_mkProd.
+ intros H12;assert (a^(N-1) mod N = 1).
+ pattern 1 at 2;rewrite <- H9;symmetry.
+ rewrite H2;rewrite H12 ...
+ rewrite <- Zpower_mult...
+ clear H12.
+ intros H14.
+ match type of H14 with _ -> _ -> _ -> ?X =>
+ assert (H12:X); try apply H14; clear H14
+ end...
+ rewrite Zmod_small...
+ assert (1 < mkProd dec).
+ assert (H14 := Zlt_0_pos (mkProd dec)).
+ assert (1 <= mkProd dec)...
+ destruct (Zle_lt_or_eq _ _ H15)...
+ inversion H16. rewrite <- H18 in H5;discriminate H5.
+ simpl in H8.
+ assert (Z_of_N s = R1 / (2 * mkProd dec) /\ Zpos r = R1 mod (2 * mkProd dec)).
+ apply mod_unique with (2 * mkProd dec);auto with zarith.
+ apply Z_mod_lt ...
+ rewrite <- Z_div_mod_eq... rewrite H7. simpl;ring.
+ destruct H15 as (H15,Heqr).
+ apply PocklingtonExtra with (F1:=mkProd dec) (R1:=R1) (m:=1);
+ auto with zmisc zarith.
+ rewrite H2;ring.
+ apply is_even_Zeven...
+ apply is_odd_Zodd...
+ intros p; case p; clear p.
+ intros HH; contradict HH.
+ apply not_prime_0.
+ 2: intros p (V1, _); contradict V1; apply Zle_not_lt; red; simpl; intros;
+ discriminate.
+ intros p Hprime Hdec; exists (Zpos a);repeat split; auto with zarith.
+ apply Zis_gcd_gcd; auto with zarith.
+ change (rel_prime (a ^ ((N - 1) / p) - 1) N).
+ match type of H12 with _ = ?X mod _ =>
+ apply rel_prime_div with (p := X); auto with zarith
+ end.
+ apply rel_prime_mod_rev; auto with zarith.
+ red.
+ pattern 1 at 3; rewrite <- H10; rewrite <- H12.
+ apply Pmod.gcd_Zis_gcd.
+ destruct (in_mkProd_prime_div_in _ Hprime _ H Hdec) as (q,Hin).
+ rewrite <- H2.
+ match goal with |- context [fold_left ?f _ _] =>
+ apply (ListAux.fold_left_invol_in _ _ f (fun k => Zdivide (a ^ ((N - 1) / p) - 1) k))
+ with (b := (p, q)); auto with zarith
+ end.
+ rewrite <- Heqr.
+ generalizeclear H0; ring_simplify
+ (((mkProd dec + mkProd dec + r + 1) * mkProd dec + r) * mkProd dec + 1)
+ ((1 * mkProd dec + 1) * (2 * mkProd dec * mkProd dec + (r - 1) * mkProd dec + 1))...
+ rewrite <- H15;rewrite <- Heqr.
+ apply check_s_r_correct with sqrt ...
+Qed.
+
+Lemma is_in_In :
+ forall p lc, is_in p lc = true -> exists c, In c lc /\ p = nprim c.
+Proof.
+ induction lc;simpl;try (intros;discriminate).
+ intros;elimif.
+ exists a;split;auto. inversion H0;trivial.
+ destruct (IHlc H) as [c [H1 H2]];exists c;auto.
+Qed.
+
+Lemma all_in_In :
+ forall lc lp, all_in lc lp = true ->
+ forall pq, In pq lp -> exists c, In c lc /\ fst pq = nprim c.
+Proof.
+ induction lp;simpl. intros H pq HF;elim HF.
+ intros;destruct a;elimif.
+ destruct H0;auto.
+ rewrite <- H0;simpl;apply is_in_In;trivial.
+Qed.
+
+Lemma test_Certif_In_Prime :
+ forall lc, test_Certif lc = true ->
+ forall c, In c lc -> prime (nprim c).
+Proof with mauto.
+ induction lc;simpl;intros. elim H0.
+ destruct H0.
+ subst c;destruct a;simpl...
+ elimif.
+ CaseEq (Mp p);[intros Heq|intros N' Heq|intros N' Heq];rewrite Heq in H;
+ try discriminate H. elimif.
+ CaseEq (SS p);[intros Heq'|intros N'' Heq'|intros N'' Heq'];rewrite Heq' in H;
+ try discriminate H.
+ rewrite H2;rewrite <- Heq.
+apply LucasLehmer;trivial.
+(destruct p; try discriminate H1).
+simpl in H1; generalize (is_lt_spec 2 p); rewrite H1; auto.
+elimif.
+apply (test_pock_correct N a d p); mauto.
+ intros k Hin;destruct (all_in_In _ _ H1 _ Hin) as (c,(H2,H3)).
+ rewrite H3;auto.
+discriminate.
+discriminate.
+ destruct a;elimif;auto.
+discriminate.
+discriminate.
+Qed.
+
+Lemma Pocklington_refl :
+ forall c lc, test_Certif (c::lc) = true -> prime (nprim c).
+Proof.
+ intros c lc Heq;apply test_Certif_In_Prime with (c::lc);trivial;simpl;auto.
+Qed.
+