aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/Iterator.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime-8.4/Coqprime/Iterator.v')
-rw-r--r--coqprime-8.4/Coqprime/Iterator.v180
1 files changed, 180 insertions, 0 deletions
diff --git a/coqprime-8.4/Coqprime/Iterator.v b/coqprime-8.4/Coqprime/Iterator.v
new file mode 100644
index 000000000..e84687cd4
--- /dev/null
+++ b/coqprime-8.4/Coqprime/Iterator.v
@@ -0,0 +1,180 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+Require Export Coq.Lists.List.
+Require Export Coqprime.Permutation.
+Require Import Coq.Arith.Arith.
+
+Section Iterator.
+Variables A B : Set.
+Variable zero : B.
+Variable f : A -> B.
+Variable g : B -> B -> B.
+Hypothesis g_zero : forall a, g a zero = a.
+Hypothesis g_trans : forall a b c, g a (g b c) = g (g a b) c.
+Hypothesis g_sym : forall a b, g a b = g b a.
+
+Definition iter := fold_right (fun a r => g (f a) r) zero.
+Hint Unfold iter .
+
+Theorem iter_app: forall l1 l2, iter (app l1 l2) = g (iter l1) (iter l2).
+intros l1; elim l1; simpl; auto.
+intros l2; rewrite g_sym; auto.
+intros a l H l2; rewrite H.
+rewrite g_trans; auto.
+Qed.
+
+Theorem iter_permutation: forall l1 l2, permutation l1 l2 -> iter l1 = iter l2.
+intros l1 l2 H; elim H; simpl; auto; clear H l1 l2.
+intros a l1 l2 H1 H2; apply f_equal2 with ( f := g ); auto.
+intros a b l; (repeat rewrite g_trans).
+apply f_equal2 with ( f := g ); auto.
+intros l1 l2 l3 H H0 H1 H2; apply trans_equal with ( 1 := H0 ); auto.
+Qed.
+
+Lemma iter_inv:
+ forall P l,
+ P zero ->
+ (forall a b, P a -> P b -> P (g a b)) ->
+ (forall x, In x l -> P (f x)) -> P (iter l).
+intros P l H H0; (elim l; simpl; auto).
+Qed.
+Variable next : A -> A.
+
+Fixpoint progression (m : A) (n : nat) {struct n} : list A :=
+ match n with 0 => nil
+ | S n1 => cons m (progression (next m) n1) end.
+
+Fixpoint next_n (c : A) (n : nat) {struct n} : A :=
+ match n with 0 => c | S n1 => next_n (next c) n1 end.
+
+Theorem progression_app:
+ forall a b n m,
+ le m n ->
+ b = next_n a m ->
+ progression a n = app (progression a m) (progression b (n - m)).
+intros a b n m; generalize a b n; clear a b n; elim m; clear m; simpl.
+intros a b n H H0; apply f_equal2 with ( f := progression ); auto with arith.
+intros m H a b n; case n; simpl; clear n.
+intros H1; absurd (0 < 1 + m); auto with arith.
+intros n H0 H1; apply f_equal2 with ( f := @cons A ); auto with arith.
+Qed.
+
+Let iter_progression := fun m n => iter (progression m n).
+
+Theorem iter_progression_app:
+ forall a b n m,
+ le m n ->
+ b = next_n a m ->
+ iter (progression a n) =
+ g (iter (progression a m)) (iter (progression b (n - m))).
+intros a b n m H H0; unfold iter_progression; rewrite (progression_app a b n m);
+ (try apply iter_app); auto.
+Qed.
+
+Theorem length_progression: forall z n, length (progression z n) = n.
+intros z n; generalize z; elim n; simpl; auto.
+Qed.
+
+End Iterator.
+Implicit Arguments iter [A B].
+Implicit Arguments progression [A].
+Implicit Arguments next_n [A].
+Hint Unfold iter .
+Hint Unfold progression .
+Hint Unfold next_n .
+
+Theorem iter_ext:
+ forall (A B : Set) zero (f1 : A -> B) f2 g l,
+ (forall a, In a l -> f1 a = f2 a) -> iter zero f1 g l = iter zero f2 g l.
+intros A B zero f1 f2 g l; elim l; simpl; auto.
+intros a l0 H H0; apply f_equal2 with ( f := g ); auto.
+Qed.
+
+Theorem iter_map:
+ forall (A B C : Set) zero (f : B -> C) g (k : A -> B) l,
+ iter zero f g (map k l) = iter zero (fun x => f (k x)) g l.
+intros A B C zero f g k l; elim l; simpl; auto.
+intros; apply f_equal2 with ( f := g ); auto with arith.
+Qed.
+
+Theorem iter_comp:
+ forall (A B : Set) zero (f1 f2 : A -> B) g l,
+ (forall a, g a zero = a) ->
+ (forall a b c, g a (g b c) = g (g a b) c) ->
+ (forall a b, g a b = g b a) ->
+ g (iter zero f1 g l) (iter zero f2 g l) =
+ iter zero (fun x => g (f1 x) (f2 x)) g l.
+intros A B zero f1 f2 g l g_zero g_trans g_sym; elim l; simpl; auto.
+intros a l0 H; rewrite <- H; (repeat rewrite <- g_trans).
+apply f_equal2 with ( f := g ); auto.
+(repeat rewrite g_trans); apply f_equal2 with ( f := g ); auto.
+Qed.
+
+Theorem iter_com:
+ forall (A B : Set) zero (f : A -> A -> B) g l1 l2,
+ (forall a, g a zero = a) ->
+ (forall a b c, g a (g b c) = g (g a b) c) ->
+ (forall a b, g a b = g b a) ->
+ iter zero (fun x => iter zero (fun y => f x y) g l1) g l2 =
+ iter zero (fun y => iter zero (fun x => f x y) g l2) g l1.
+intros A B zero f g l1 l2 H H0 H1; generalize l2; elim l1; simpl; auto;
+ clear l1 l2.
+intros l2; elim l2; simpl; auto with arith.
+intros; rewrite H1; rewrite H; auto with arith.
+intros a l1 H2 l2; case l2; clear l2; simpl; auto.
+elim l1; simpl; auto with arith.
+intros; rewrite H1; rewrite H; auto with arith.
+intros b l2.
+rewrite <- (iter_comp
+ _ _ zero (fun x => f x a)
+ (fun x => iter zero (fun (y : A) => f x y) g l1)); auto with arith.
+rewrite <- (iter_comp
+ _ _ zero (fun y => f b y)
+ (fun y => iter zero (fun (x : A) => f x y) g l2)); auto with arith.
+(repeat rewrite H0); auto.
+apply f_equal2 with ( f := g ); auto.
+(repeat rewrite <- H0); auto.
+apply f_equal2 with ( f := g ); auto.
+Qed.
+
+Theorem iter_comp_const:
+ forall (A B : Set) zero (f : A -> B) g k l,
+ k zero = zero ->
+ (forall a b, k (g a b) = g (k a) (k b)) ->
+ k (iter zero f g l) = iter zero (fun x => k (f x)) g l.
+intros A B zero f g k l H H0; elim l; simpl; auto.
+intros a l0 H1; rewrite H0; apply f_equal2 with ( f := g ); auto.
+Qed.
+
+Lemma next_n_S: forall n m, next_n S n m = plus n m.
+intros n m; generalize n; elim m; clear n m; simpl; auto with arith.
+intros m H n; case n; simpl; auto with arith.
+rewrite H; auto with arith.
+intros n1; rewrite H; simpl; auto with arith.
+Qed.
+
+Theorem progression_S_le_init:
+ forall n m p, In p (progression S n m) -> le n p.
+intros n m; generalize n; elim m; clear n m; simpl; auto.
+intros; contradiction.
+intros m H n p [H1|H1]; auto with arith.
+subst n; auto.
+apply le_S_n; auto with arith.
+Qed.
+
+Theorem progression_S_le_end:
+ forall n m p, In p (progression S n m) -> lt p (n + m).
+intros n m; generalize n; elim m; clear n m; simpl; auto.
+intros; contradiction.
+intros m H n p [H1|H1]; auto with arith.
+subst n; auto with arith.
+rewrite <- plus_n_Sm; auto with arith.
+rewrite <- plus_n_Sm; auto with arith.
+generalize (H (S n) p); auto with arith.
+Qed.