aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/IGroup.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime-8.4/Coqprime/IGroup.v')
-rw-r--r--coqprime-8.4/Coqprime/IGroup.v253
1 files changed, 253 insertions, 0 deletions
diff --git a/coqprime-8.4/Coqprime/IGroup.v b/coqprime-8.4/Coqprime/IGroup.v
new file mode 100644
index 000000000..04219be5a
--- /dev/null
+++ b/coqprime-8.4/Coqprime/IGroup.v
@@ -0,0 +1,253 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+(**********************************************************************
+ Igroup
+
+ Build the group of the inversible elements for the operation
+
+ Definition: ZpGroup
+ **********************************************************************)
+Require Import Coq.ZArith.ZArith.
+Require Import Coqprime.Tactic.
+Require Import Coq.Arith.Wf_nat.
+Require Import Coqprime.UList.
+Require Import Coqprime.ListAux.
+Require Import Coqprime.FGroup.
+
+Open Scope Z_scope.
+
+Section IG.
+
+Variable A: Set.
+Variable op: A -> A -> A.
+Variable support: list A.
+Variable e: A.
+
+Hypothesis A_dec: forall a b: A, {a = b} + {a <> b}.
+Hypothesis support_ulist: ulist support.
+Hypothesis e_in_support: In e support.
+Hypothesis op_internal: forall a b, In a support -> In b support -> In (op a b) support.
+Hypothesis op_assoc: forall a b c, In a support -> In b support -> In c support -> op a (op b c) = op (op a b) c.
+Hypothesis e_is_zero_l: forall a, In a support -> op e a = a.
+Hypothesis e_is_zero_r: forall a, In a support -> op a e = a.
+
+(**************************************
+ is_inv_aux tests if there is an inverse of a for op in l
+ **************************************)
+
+Fixpoint is_inv_aux (l: list A) (a: A) {struct l}: bool :=
+ match l with nil => false | cons b l1 =>
+ if (A_dec (op a b) e) then if (A_dec (op b a) e) then true else is_inv_aux l1 a else is_inv_aux l1 a
+ end.
+
+Theorem is_inv_aux_false: forall b l, (forall a, (In a l) -> op b a <> e \/ op a b <> e) -> is_inv_aux l b = false.
+intros b l; elim l; simpl; auto.
+intros a l1 Rec H; case (A_dec (op a b) e); case (A_dec (op b a) e); auto.
+intros H1 H2; case (H a); auto; intros H3; case H3; auto.
+Qed.
+
+(**************************************
+ is_inv tests if there is an inverse in support
+ **************************************)
+Definition is_inv := is_inv_aux support.
+
+(**************************************
+ isupport_aux returns the sublist of inversible element of support
+ **************************************)
+
+Fixpoint isupport_aux (l: list A) : list A :=
+ match l with nil => nil | cons a l1 => if is_inv a then a::isupport_aux l1 else isupport_aux l1 end.
+
+(**************************************
+ Some properties of isupport_aux
+ **************************************)
+
+Theorem isupport_aux_is_inv_true: forall l a, In a (isupport_aux l) -> is_inv a = true.
+intros l a; elim l; simpl; auto.
+intros b l1 H; case_eq (is_inv b); intros H1; simpl; auto.
+intros [H2 | H2]; subst; auto.
+Qed.
+
+Theorem isupport_aux_is_in: forall l a, is_inv a = true -> In a l -> In a (isupport_aux l).
+intros l a; elim l; simpl; auto.
+intros b l1 Rec H [H1 | H1]; subst.
+rewrite H; auto with datatypes.
+case (is_inv b); auto with datatypes.
+Qed.
+
+
+Theorem isupport_aux_not_in:
+ forall b l, (forall a, (In a support) -> op b a <> e \/ op a b <> e) -> ~ In b (isupport_aux l).
+intros b l; elim l; simpl; simpl; auto.
+intros a l1 H; case_eq (is_inv a); intros H1; simpl; auto.
+intros H2 [H3 | H3]; subst.
+contradict H1.
+unfold is_inv; rewrite is_inv_aux_false; auto.
+case H; auto; apply isupport_aux_is_in; auto.
+Qed.
+
+Theorem isupport_aux_incl: forall l, incl (isupport_aux l) l.
+intros l; elim l; simpl; auto with datatypes.
+intros a l1 H1; case (is_inv a); auto with datatypes.
+Qed.
+
+Theorem isupport_aux_ulist: forall l, ulist l -> ulist (isupport_aux l).
+intros l; elim l; simpl; auto with datatypes.
+intros a l1 H1 H2; case_eq (is_inv a); intros H3; auto with datatypes.
+apply ulist_cons; auto with datatypes.
+intros H4; apply (ulist_app_inv _ (a::nil) l1 a); auto with datatypes.
+apply (isupport_aux_incl l1 a); auto.
+apply H1; apply ulist_app_inv_r with (a:: nil); auto.
+apply H1; apply ulist_app_inv_r with (a:: nil); auto.
+Qed.
+
+(**************************************
+ isupport is the sublist of inversible element of support
+ **************************************)
+
+Definition isupport := isupport_aux support.
+
+(**************************************
+ Some properties of isupport
+ **************************************)
+
+Theorem isupport_is_inv_true: forall a, In a isupport -> is_inv a = true.
+unfold isupport; intros a H; apply isupport_aux_is_inv_true with (1 := H).
+Qed.
+
+Theorem isupport_is_in: forall a, is_inv a = true -> In a support -> In a isupport.
+intros a H H1; unfold isupport; apply isupport_aux_is_in; auto.
+Qed.
+
+Theorem isupport_incl: incl isupport support.
+unfold isupport; apply isupport_aux_incl.
+Qed.
+
+Theorem isupport_ulist: ulist isupport.
+unfold isupport; apply isupport_aux_ulist.
+apply support_ulist.
+Qed.
+
+Theorem isupport_length: (length isupport <= length support)%nat.
+apply ulist_incl_length.
+apply isupport_ulist.
+apply isupport_incl.
+Qed.
+
+Theorem isupport_length_strict:
+ forall b, (In b support) -> (forall a, (In a support) -> op b a <> e \/ op a b <> e) ->
+ (length isupport < length support)%nat.
+intros b H H1; apply ulist_incl_length_strict.
+apply isupport_ulist.
+apply isupport_incl.
+intros H2; case (isupport_aux_not_in b support); auto.
+Qed.
+
+Fixpoint inv_aux (l: list A) (a: A) {struct l}: A :=
+ match l with nil => e | cons b l1 =>
+ if A_dec (op a b) e then if (A_dec (op b a) e) then b else inv_aux l1 a else inv_aux l1 a
+ end.
+
+Theorem inv_aux_prop_r: forall l a, is_inv_aux l a = true -> op a (inv_aux l a) = e.
+intros l a; elim l; simpl.
+intros; discriminate.
+intros b l1 H1; case (A_dec (op a b) e); case (A_dec (op b a) e); intros H3 H4; subst; auto.
+Qed.
+
+Theorem inv_aux_prop_l: forall l a, is_inv_aux l a = true -> op (inv_aux l a) a = e.
+intros l a; elim l; simpl.
+intros; discriminate.
+intros b l1 H1; case (A_dec (op a b) e); case (A_dec (op b a) e); intros H3 H4; subst; auto.
+Qed.
+
+Theorem inv_aux_inv: forall l a b, op a b = e -> op b a = e -> (In a l) -> is_inv_aux l b = true.
+intros l a b; elim l; simpl.
+intros _ _ H; case H.
+intros c l1 Rec H H0 H1; case H1; clear H1; intros H1; subst; rewrite H.
+case (A_dec (op b a) e); case (A_dec e e); auto.
+intros H1 H2; contradict H2; rewrite H0; auto.
+case (A_dec (op b c) e); case (A_dec (op c b) e); auto.
+Qed.
+
+Theorem inv_aux_in: forall l a, In (inv_aux l a) l \/ inv_aux l a = e.
+intros l a; elim l; simpl; auto.
+intros b l1; case (A_dec (op a b) e); case (A_dec (op b a) e); intros _ _ [H1 | H1]; auto.
+Qed.
+
+(**************************************
+ The inverse function
+ **************************************)
+
+Definition inv := inv_aux support.
+
+(**************************************
+ Some properties of inv
+ **************************************)
+
+Theorem inv_prop_r: forall a, In a isupport -> op a (inv a) = e.
+intros a H; unfold inv; apply inv_aux_prop_r with (l := support).
+change (is_inv a = true).
+apply isupport_is_inv_true; auto.
+Qed.
+
+Theorem inv_prop_l: forall a, In a isupport -> op (inv a) a = e.
+intros a H; unfold inv; apply inv_aux_prop_l with (l := support).
+change (is_inv a = true).
+apply isupport_is_inv_true; auto.
+Qed.
+
+Theorem is_inv_true: forall a b, op b a = e -> op a b = e -> (In a support) -> is_inv b = true.
+intros a b H H1 H2; unfold is_inv; apply inv_aux_inv with a; auto.
+Qed.
+
+Theorem is_inv_false: forall b, (forall a, (In a support) -> op b a <> e \/ op a b <> e) -> is_inv b = false.
+intros b H; unfold is_inv; apply is_inv_aux_false; auto.
+Qed.
+
+Theorem inv_internal: forall a, In a isupport -> In (inv a) isupport.
+intros a H; apply isupport_is_in.
+apply is_inv_true with a; auto.
+apply inv_prop_l; auto.
+apply inv_prop_r; auto.
+apply (isupport_incl a); auto.
+case (inv_aux_in support a); unfold inv; auto.
+intros H1; rewrite H1; apply e_in_support; auto with zarith.
+Qed.
+
+(**************************************
+ We are now ready to build our group
+ **************************************)
+
+Definition IGroup : (FGroup op).
+generalize (fun x=> (isupport_incl x)); intros Hx.
+apply mkGroup with (s := isupport) (e := e) (i := inv); auto.
+apply isupport_ulist.
+intros a b H H1.
+assert (Haii: In (inv a) isupport); try apply inv_internal; auto.
+assert (Hbii: In (inv b) isupport); try apply inv_internal; auto.
+apply isupport_is_in; auto.
+apply is_inv_true with (op (inv b) (inv a)); auto.
+rewrite op_assoc; auto.
+rewrite <- (op_assoc a); auto.
+rewrite inv_prop_r; auto.
+rewrite e_is_zero_r; auto.
+apply inv_prop_r; auto.
+rewrite <- (op_assoc (inv b)); auto.
+rewrite (op_assoc (inv a)); auto.
+rewrite inv_prop_l; auto.
+rewrite e_is_zero_l; auto.
+apply inv_prop_l; auto.
+apply isupport_is_in; auto.
+apply is_inv_true with e; auto.
+intros a H; apply inv_internal; auto.
+intros; apply inv_prop_l; auto.
+intros; apply inv_prop_r; auto.
+Defined.
+
+End IG.