aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/FGroup.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime-8.4/Coqprime/FGroup.v')
-rw-r--r--coqprime-8.4/Coqprime/FGroup.v123
1 files changed, 123 insertions, 0 deletions
diff --git a/coqprime-8.4/Coqprime/FGroup.v b/coqprime-8.4/Coqprime/FGroup.v
new file mode 100644
index 000000000..0bcc9ebf1
--- /dev/null
+++ b/coqprime-8.4/Coqprime/FGroup.v
@@ -0,0 +1,123 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+(**********************************************************************
+ FGroup.v
+
+ Defintion and properties of finite groups
+
+ Definition: FGroup
+ **********************************************************************)
+Require Import Coq.Lists.List.
+Require Import Coqprime.UList.
+Require Import Coqprime.Tactic.
+Require Import Coq.ZArith.ZArith.
+
+Open Scope Z_scope.
+
+Set Implicit Arguments.
+
+(**************************************
+ A finite group is defined for an operation op
+ it has a support (s)
+ op operates inside the group (internal)
+ op is associative (assoc)
+ it has an element (e) that is neutral (e_is_zero_l e_is_zero_r)
+ it has an inverse operator (i)
+ the inverse operates inside the group (i_internal)
+ it gives an inverse (i_is_inverse_l is_is_inverse_r)
+ **************************************)
+
+Record FGroup (A: Set) (op: A -> A -> A): Set := mkGroup
+ {s : (list A);
+ unique_s: ulist s;
+ internal: forall a b, In a s -> In b s -> In (op a b) s;
+ assoc: forall a b c, In a s -> In b s -> In c s -> op a (op b c) = op (op a b) c;
+ e: A;
+ e_in_s: In e s;
+ e_is_zero_l: forall a, In a s -> op e a = a;
+ e_is_zero_r: forall a, In a s -> op a e = a;
+ i: A -> A;
+ i_internal: forall a, In a s -> In (i a) s;
+ i_is_inverse_l: forall a, (In a s) -> op (i a) a = e;
+ i_is_inverse_r: forall a, (In a s) -> op a (i a) = e
+}.
+
+(**************************************
+ The order of a group is the lengh of the support
+ **************************************)
+
+Definition g_order (A: Set) (op: A -> A -> A) (g: FGroup op) := Z_of_nat (length g.(s)).
+
+Unset Implicit Arguments.
+
+Hint Resolve unique_s internal e_in_s e_is_zero_l e_is_zero_r i_internal
+ i_is_inverse_l i_is_inverse_r assoc.
+
+
+Section FGroup.
+
+Variable A: Set.
+Variable op: A -> A -> A.
+
+(**************************************
+ Some properties of a finite group
+ **************************************)
+
+Theorem g_cancel_l: forall (g : FGroup op), forall a b c, In a g.(s) -> In b g.(s) -> In c g.(s) -> op a b = op a c -> b = c.
+intros g a b c H1 H2 H3 H4; apply trans_equal with (op g.(e) b); sauto.
+replace (g.(e)) with (op (g.(i) a) a); sauto.
+apply trans_equal with (op (i g a) (op a b)); sauto.
+apply sym_equal; apply assoc with g; auto.
+rewrite H4.
+apply trans_equal with (op (op (i g a) a) c); sauto.
+apply assoc with g; auto.
+replace (op (g.(i) a) a) with g.(e); sauto.
+Qed.
+
+Theorem g_cancel_r: forall (g : FGroup op), forall a b c, In a g.(s) -> In b g.(s) -> In c g.(s) -> op b a = op c a -> b = c.
+intros g a b c H1 H2 H3 H4; apply trans_equal with (op b g.(e)); sauto.
+replace (g.(e)) with (op a (g.(i) a)); sauto.
+apply trans_equal with (op (op b a) (i g a)); sauto.
+apply assoc with g; auto.
+rewrite H4.
+apply trans_equal with (op c (op a (i g a))); sauto.
+apply sym_equal; apply assoc with g; sauto.
+replace (op a (g.(i) a)) with g.(e); sauto.
+Qed.
+
+Theorem e_unique: forall (g : FGroup op), forall e1, In e1 g.(s) -> (forall a, In a g.(s) -> op e1 a = a) -> e1 = g.(e).
+intros g e1 He1 H2.
+apply trans_equal with (op e1 g.(e)); sauto.
+Qed.
+
+Theorem inv_op: forall (g: FGroup op) a b, In a g.(s) -> In b g.(s) -> g.(i) (op a b) = op (g.(i) b) (g.(i) a).
+intros g a1 b1 H1 H2; apply g_cancel_l with (g := g) (a := op a1 b1); sauto.
+repeat rewrite g.(assoc); sauto.
+apply trans_equal with g.(e); sauto.
+rewrite <- g.(assoc) with (a := a1); sauto.
+rewrite g.(i_is_inverse_r); sauto.
+rewrite g.(e_is_zero_r); sauto.
+Qed.
+
+Theorem i_e: forall (g: FGroup op), g.(i) g.(e) = g.(e).
+intro g; apply g_cancel_l with (g:= g) (a := g.(e)); sauto.
+apply trans_equal with g.(e); sauto.
+Qed.
+
+(**************************************
+ A group has at least one element
+ **************************************)
+
+Theorem g_order_pos: forall g: FGroup op, 0 < g_order g.
+intro g; generalize g.(e_in_s); unfold g_order; case g.(s); simpl; auto with zarith.
+Qed.
+
+
+
+End FGroup.