aboutsummaryrefslogtreecommitdiff
path: root/coqprime-8.4/Coqprime/Euler.v
diff options
context:
space:
mode:
Diffstat (limited to 'coqprime-8.4/Coqprime/Euler.v')
-rw-r--r--coqprime-8.4/Coqprime/Euler.v88
1 files changed, 88 insertions, 0 deletions
diff --git a/coqprime-8.4/Coqprime/Euler.v b/coqprime-8.4/Coqprime/Euler.v
new file mode 100644
index 000000000..e571d8e3c
--- /dev/null
+++ b/coqprime-8.4/Coqprime/Euler.v
@@ -0,0 +1,88 @@
+
+(*************************************************************)
+(* This file is distributed under the terms of the *)
+(* GNU Lesser General Public License Version 2.1 *)
+(*************************************************************)
+(* Benjamin.Gregoire@inria.fr Laurent.Thery@inria.fr *)
+(*************************************************************)
+
+(************************************************************************
+
+ Definition of the Euler Totient function
+
+*************************************************************************)
+Require Import Coq.ZArith.ZArith.
+Require Export Coq.ZArith.Znumtheory.
+Require Import Coqprime.Tactic.
+Require Export Coqprime.ZSum.
+
+Open Scope Z_scope.
+
+Definition phi n := Zsum 1 (n - 1) (fun x => if rel_prime_dec x n then 1 else 0).
+
+Theorem phi_def_with_0:
+ forall n, 1< n -> phi n = Zsum 0 (n - 1) (fun x => if rel_prime_dec x n then 1 else 0).
+intros n H; rewrite Zsum_S_left; auto with zarith.
+case (rel_prime_dec 0 n); intros H2.
+contradict H2; apply not_rel_prime_0; auto.
+rewrite Zplus_0_l; auto.
+Qed.
+
+Theorem phi_pos: forall n, 1 < n -> 0 < phi n.
+intros n H; unfold phi.
+case (Zle_lt_or_eq 2 n); auto with zarith; intros H1; subst.
+rewrite Zsum_S_left; simpl; auto with zarith.
+case (rel_prime_dec 1 n); intros H2.
+apply Zlt_le_trans with (1 + 0); auto with zarith.
+apply Zplus_le_compat_l.
+pattern 0 at 1; replace 0 with ((1 + (n - 1) - 2) * 0); auto with zarith.
+rewrite <- Zsum_c; auto with zarith.
+apply Zsum_le; auto with zarith.
+intros x H3; case (rel_prime_dec x n); auto with zarith.
+case H2; apply rel_prime_1; auto with zarith.
+rewrite Zsum_nn.
+case (rel_prime_dec (2 - 1) 2); auto with zarith.
+intros H1; contradict H1; apply rel_prime_1; auto with zarith.
+Qed.
+
+Theorem phi_le_n_minus_1: forall n, 1 < n -> phi n <= n - 1.
+intros n H; replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith.
+rewrite <- Zsum_c; auto with zarith.
+unfold phi; apply Zsum_le; auto with zarith.
+intros x H1; case (rel_prime_dec x n); auto with zarith.
+Qed.
+
+Theorem prime_phi_n_minus_1: forall n, prime n -> phi n = n - 1.
+intros n H; replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith.
+assert (Hu: 1 <= n - 1).
+assert (2 <= n); auto with zarith.
+apply prime_ge_2; auto.
+rewrite <- Zsum_c; auto with zarith; unfold phi; apply Zsum_ext; auto.
+intros x (H2, H3); case H; clear H; intros H H1.
+generalize (H1 x); case (rel_prime_dec x n); auto with zarith.
+intros H6 H7; contradict H6; apply H7; split; auto with zarith.
+Qed.
+
+Theorem phi_n_minus_1_prime: forall n, 1 < n -> phi n = n - 1 -> prime n.
+intros n H H1; case (prime_dec n); auto; intros H2.
+assert (H3: phi n < n - 1); auto with zarith.
+replace (n-1) with ((1 + (n - 1) - 1) * 1); auto with zarith.
+assert (Hu: 1 <= n - 1); auto with zarith.
+rewrite <- Zsum_c; auto with zarith; unfold phi; apply Zsum_lt; auto.
+intros x _; case (rel_prime_dec x n); auto with zarith.
+case not_prime_divide with n; auto.
+intros x (H3, H4); exists x; repeat split; auto with zarith.
+case (rel_prime_dec x n); auto with zarith.
+intros H5; absurd (x = 1 \/ x = -1); auto with zarith.
+case (Zis_gcd_unique x n x 1); auto.
+apply Zis_gcd_intro; auto; exists 1; auto with zarith.
+contradict H3; rewrite H1; auto with zarith.
+Qed.
+
+Theorem phi_divide_prime: forall n, 1 < n -> (n - 1 | phi n) -> prime n.
+intros n H1 H2; apply phi_n_minus_1_prime; auto.
+apply Zle_antisym.
+apply phi_le_n_minus_1; auto.
+apply Zdivide_le; auto; auto with zarith.
+apply phi_pos; auto.
+Qed.