aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/Util/ZUtil.v150
1 files changed, 149 insertions, 1 deletions
diff --git a/src/Util/ZUtil.v b/src/Util/ZUtil.v
index e8d963b1b..13fea5c45 100644
--- a/src/Util/ZUtil.v
+++ b/src/Util/ZUtil.v
@@ -22,8 +22,9 @@ Hint Extern 1 => lia : lia.
Hint Extern 1 => lra : lra.
Hint Extern 1 => nia : nia.
Hint Extern 1 => omega : omega.
-Hint Resolve Z.log2_nonneg Z.log2_up_nonneg Z.div_small Z.mod_small Z.pow_neg_r Z.pow_0_l Z.pow_pos_nonneg Z.lt_le_incl Z.pow_nonzero Z.div_le_upper_bound Z_div_exact_full_2 Z.div_same Z.div_lt_upper_bound Z.div_le_lower_bound Zplus_minus Zplus_gt_compat_l Zplus_gt_compat_r Zmult_gt_compat_l Zmult_gt_compat_r Z.pow_lt_mono_r Z.pow_lt_mono_l Z.pow_lt_mono Z.mul_lt_mono_nonneg Z.div_lt_upper_bound Z.div_pos Zmult_lt_compat_r Z.pow_le_mono_r Z.pow_le_mono_l Z.div_lt : zarith.
+Hint Resolve Z.log2_nonneg Z.log2_up_nonneg Z.div_small Z.mod_small Z.pow_neg_r Z.pow_0_l Z.pow_pos_nonneg Z.lt_le_incl Z.pow_nonzero Z.div_le_upper_bound Z_div_exact_full_2 Z.div_same Z.div_lt_upper_bound Z.div_le_lower_bound Zplus_minus Zplus_gt_compat_l Zplus_gt_compat_r Zmult_gt_compat_l Zmult_gt_compat_r Z.pow_lt_mono_r Z.pow_lt_mono_l Z.pow_lt_mono Z.mul_lt_mono_nonneg Z.div_lt_upper_bound Z.div_pos Zmult_lt_compat_r Z.pow_le_mono_r Z.pow_le_mono_l Z.div_lt Z.div_le_compat_l Z.div_le_mono : zarith.
Hint Resolve (fun a b H => proj1 (Z.mod_pos_bound a b H)) (fun a b H => proj2 (Z.mod_pos_bound a b H)) (fun a b pf => proj1 (Z.pow_gt_1 a b pf)) : zarith.
+Hint Resolve (fun n m => proj1 (Z.opp_le_mono n m)) : zarith.
Hint Resolve (fun n m => proj1 (Z.pred_le_mono n m)) : zarith.
Hint Resolve (fun a b => proj2 (Z.lor_nonneg a b)) : zarith.
@@ -2639,6 +2640,153 @@ Module Z.
try (apply f_equal2; [ | reflexivity ]);
try zutil_arith.
+ Ltac clean_neg :=
+ repeat match goal with
+ | [ H : (-?x) < 0 |- _ ] => assert (0 < x) by omega; clear H
+ | [ H : 0 > (-?x) |- _ ] => assert (0 < x) by omega; clear H
+ | [ H : -?x <= -?y |- _ ] => apply Z.opp_le_mono in H
+ | [ |- -?x <= -?y ] => apply Z.opp_le_mono
+ | _ => progress rewrite <- Z.opp_le_mono in *
+ | [ H : 0 <= ?x, H' : 0 <= ?y, H'' : -?x <= ?y |- _ ] => clear H''
+ | [ H : 0 < ?x, H' : 0 <= ?y, H'' : -?x <= ?y |- _ ] => clear H''
+ | [ H : 0 <= ?x, H' : 0 < ?y, H'' : -?x <= ?y |- _ ] => clear H''
+ | [ H : 0 < ?x, H' : 0 < ?y, H'' : -?x <= ?y |- _ ] => clear H''
+ | [ H : 0 < ?x, H' : 0 <= ?y, H'' : -?x < ?y |- _ ] => clear H''
+ | [ H : 0 <= ?x, H' : 0 < ?y, H'' : -?x < ?y |- _ ] => clear H''
+ | [ H : 0 < ?x, H' : 0 < ?y, H'' : -?x < ?y |- _ ] => clear H''
+ end.
+ Ltac replace_with_neg x :=
+ assert (x = -(-x)) by omega; generalize dependent (-x);
+ let x' := fresh in
+ rename x into x'; intro x; intros; subst x';
+ clean_neg.
+ Ltac replace_all_neg_with_pos :=
+ repeat match goal with
+ | [ H : ?x < 0 |- _ ] => replace_with_neg x
+ | [ H : 0 > ?x |- _ ] => replace_with_neg x
+ end.
+
+ Lemma shiftl_le_Proper2 y
+ : Proper (Z.le ==> Z.le) (fun x => Z.shiftl x y).
+ Proof.
+ unfold Basics.flip in *.
+ pose proof (Zle_cases 0 y) as Hx.
+ intros x x' H.
+ pose proof (Zle_cases 0 x) as Hy.
+ pose proof (Zle_cases 0 x') as Hy'.
+ destruct (0 <=? y), (0 <=? x), (0 <=? x');
+ autorewrite with Zshift_to_pow;
+ replace_all_neg_with_pos;
+ autorewrite with pull_Zopp;
+ rewrite ?Z.div_opp_l_complete;
+ repeat destruct (Z_zerop _);
+ autorewrite with zsimplify_const pull_Zopp;
+ auto with zarith;
+ repeat match goal with
+ | [ |- context[-?x - ?y] ]
+ => replace (-x - y) with (-(x + y)) by omega
+ | _ => rewrite <- Z.opp_le_mono
+ | _ => rewrite <- Z.add_le_mono_r
+ | _ => solve [ auto with zarith ]
+ | [ |- ?x <= ?y + 1 ]
+ => cut (x <= y); [ omega | solve [ auto with zarith ] ]
+ | [ |- -_ <= _ ]
+ => solve [ transitivity (-0); auto with zarith ]
+ end.
+ { repeat match goal with H : context[_ mod _] |- _ => revert H end;
+ Z.div_mod_to_quot_rem; nia. }
+ Qed.
+
+ Lemma shiftl_le_Proper1 x
+ (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
+ : Proper (R (0 <=? x) ==> Z.le) (Z.shiftl x).
+ Proof.
+ unfold Basics.flip in *.
+ pose proof (Zle_cases 0 x) as Hx.
+ intros y y' H.
+ pose proof (Zle_cases 0 y) as Hy.
+ pose proof (Zle_cases 0 y') as Hy'.
+ destruct (0 <=? x), (0 <=? y), (0 <=? y'); subst R; cbv beta iota in *;
+ autorewrite with Zshift_to_pow;
+ replace_all_neg_with_pos;
+ autorewrite with pull_Zopp;
+ rewrite ?Z.div_opp_l_complete;
+ repeat destruct (Z_zerop _);
+ autorewrite with zsimplify_const pull_Zopp;
+ auto with zarith;
+ repeat match goal with
+ | [ |- context[-?x - ?y] ]
+ => replace (-x - y) with (-(x + y)) by omega
+ | _ => rewrite <- Z.opp_le_mono
+ | _ => rewrite <- Z.add_le_mono_r
+ | _ => solve [ auto with zarith ]
+ | [ |- ?x <= ?y + 1 ]
+ => cut (x <= y); [ omega | solve [ auto with zarith ] ]
+ | [ |- context[2^?x] ]
+ => lazymatch goal with
+ | [ H : 1 < 2^x |- _ ] => fail
+ | [ H : 0 < 2^x |- _ ] => fail
+ | [ H : 0 <= 2^x |- _ ] => fail
+ | _ => first [ assert (1 < 2^x) by auto with zarith
+ | assert (0 < 2^x) by auto with zarith
+ | assert (0 <= 2^x) by auto with zarith ]
+ end
+ | [ H : ?x <= ?y |- _ ]
+ => is_var x; is_var y;
+ lazymatch goal with
+ | [ H : 2^x <= 2^y |- _ ] => fail
+ | [ H : 2^x < 2^y |- _ ] => fail
+ | _ => assert (2^x <= 2^y) by auto with zarith
+ end
+ | [ H : ?x <= ?y, H' : ?f ?x = ?k, H'' : ?f ?y <> ?k |- _ ]
+ => let Hn := fresh in
+ assert (Hn : x <> y) by congruence;
+ assert (x < y) by omega; clear H Hn
+ | [ H : ?x <= ?y, H' : ?f ?x <> ?k, H'' : ?f ?y = ?k |- _ ]
+ => let Hn := fresh in
+ assert (Hn : x <> y) by congruence;
+ assert (x < y) by omega; clear H Hn
+ | _ => solve [ repeat match goal with H : context[_ mod _] |- _ => revert H end;
+ Z.div_mod_to_quot_rem; subst;
+ lazymatch goal with
+ | [ |- _ <= (?a * ?q + ?r) * ?q' ]
+ => transitivity (q * (a * q') + r * q');
+ [ assert (0 < a * q') by nia; nia
+ | nia ]
+ end ]
+ end.
+ { replace y' with (y + (y' - y)) by omega.
+ rewrite Z.pow_add_r, <- Zdiv_Zdiv by auto with zarith.
+ assert (y < y') by (assert (y <> y') by congruence; omega).
+ assert (1 < 2^(y'-y)) by auto with zarith.
+ assert (0 < x / 2^y)
+ by (repeat match goal with H : context[_ mod _] |- _ => revert H end;
+ Z.div_mod_to_quot_rem; nia).
+ assert (2^y <= x)
+ by (repeat match goal with H : context[_ / _] |- _ => revert H end;
+ Z.div_mod_to_quot_rem; nia).
+ match goal with
+ | [ |- ?x + 1 <= ?y ] => cut (x < y); [ omega | ]
+ end.
+ auto with zarith. }
+ Qed.
+
+ Lemma shiftr_le_Proper2 y
+ : Proper (Z.le ==> Z.le) (fun x => Z.shiftr x y).
+ Proof. apply shiftl_le_Proper2. Qed.
+
+ Lemma shiftr_le_Proper1 x
+ (R := fun b : bool => if b then Z.le else Basics.flip Z.le)
+ : Proper (R (x <? 0) ==> Z.le) (Z.shiftr x).
+ Proof.
+ subst R; intros y y' H'; unfold Z.shiftr; apply shiftl_le_Proper1.
+ unfold Basics.flip in *.
+ pose proof (Zle_cases 0 x).
+ pose proof (Zlt_cases x 0).
+ destruct (0 <=? x), (x <? 0); try omega.
+ Qed.
+
+
(* Naming Convention: [X] for thing being divided by, [p] for plus,
[m] for minus, [d] for div, and [_] to separate parentheses and
multiplication. *)