aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGravatar Andres Erbsen <andreser@mit.edu>2016-06-10 11:25:04 -0400
committerGravatar Andres Erbsen <andreser@mit.edu>2016-06-10 11:25:04 -0400
commit54a15629802a7da5f4538675d449859a792fd3c5 (patch)
treef43e9d8c2cbee76c934da66e403bf015cf2bc748 /src
parenteff9a3e80cb27c4e56eba44ec9a5984c35de544f (diff)
improve generic field library
Diffstat (limited to 'src')
-rw-r--r--src/Field.v181
1 files changed, 160 insertions, 21 deletions
diff --git a/src/Field.v b/src/Field.v
index e98488e9e..e1859b39c 100644
--- a/src/Field.v
+++ b/src/Field.v
@@ -1,6 +1,27 @@
Require Import Coq.setoid_ring.Cring.
Generalizable All Variables.
+
+(*TODO: move *)
+Lemma Z_pos_pred_0 p : Z.pos p - 1 = 0 -> p=1%positive.
+Proof. destruct p; simpl in *; try discriminate; auto. Qed.
+
+Lemma Z_neg_succ_neg : forall a b, (Z.neg a + 1)%Z = Z.neg b -> a = Pos.succ b.
+Admitted.
+
+Lemma Z_pos_pred_pos : forall a b, (Z.pos a - 1)%Z = Z.pos b -> a = Pos.succ b.
+Admitted.
+
+Lemma Z_pred_neg p : (Z.neg p - 1)%Z = Z.neg (Pos.succ p).
+Admitted.
+
+(* teach nsatz to deal with the definition of power we are use *)
+Instance reify_pow_pos (R:Type) `{Ring R}
+e1 lvar t1 n
+`{Ring (T:=R)}
+{_:reify e1 lvar t1}
+: reify (PEpow e1 (N.pos n)) lvar (pow_pos t1 n)|1.
+
Class Field_ops (F:Type)
`{Ring_ops F}
{inv:F->F} := {}.
@@ -12,7 +33,7 @@ Notation "n / d" := (division n d).
Module F.
- Definition div `{Field_ops F} n d := mul n (inv d).
+ Definition div `{Field_ops F} n d := n * (inv d).
Global Instance div_notation `{Field_ops F} : @Division F F := div.
Class Field {F inv} `{FieldCring:Cring (R:=F)} {Fo:Field_ops F (inv:=inv)} :=
@@ -33,6 +54,8 @@ Module F.
Section FieldProofs.
Context `{Field F}.
+
+ Definition unfold_div (x y:F) : x/y = x * inv y := eq_refl.
Global Instance Proper_div :
Proper (_==_ ==> _==_ ==> _==_) div.
@@ -43,6 +66,21 @@ Module F.
end; reflexivity.
Qed.
+ Global Instance Proper_pow_pos : Proper (_==_==>eq==>_==_) pow_pos.
+ Proof.
+ cut (forall n (y x : F), x == y -> pow_pos x n == pow_pos y n);
+ [repeat intro; subst; eauto|].
+ induction n; simpl; intros; trivial;
+ repeat eapply ring_mult_comp; eauto.
+ Qed.
+
+ Global Instance Propper_powZ : Proper (_==_==>eq==>_==_) powZ.
+ Proof.
+ repeat intro; subst; unfold powZ.
+ match goal with |- context[match ?x with _ => _ end] => destruct x end;
+ repeat (eapply Proper_pow_pos || f_equiv; trivial).
+ Qed.
+
Require Import Coq.setoid_ring.Field_theory Coq.setoid_ring.Field_tac.
Lemma field_theory_for_tactic : field_theory 0 1 _+_ _*_ _-_ -_ _/_ inv _==_.
Proof.
@@ -53,9 +91,12 @@ Module F.
Lemma power_theory_for_tactic : power_theory 1 _*_ _==_ NtoZ power.
Proof. constructor; destruct n; reflexivity. Qed.
+ Create HintDb field_nonzero discriminated.
+ Hint Resolve field_one_neq_zero : field_nonzero.
+ Ltac field_nonzero := repeat split; auto 3 with field_nonzero.
Ltac field_power_isconst t := Ncst t.
Add Field FieldProofsAddField : field_theory_for_tactic
- (postprocess [trivial],
+ (postprocess [field_nonzero],
power_tac power_theory_for_tactic [field_power_isconst]).
Lemma div_mul_idemp_l : forall a b, (a==0 -> False) -> a*b/a == b.
@@ -75,40 +116,138 @@ Module F.
constructor; intros; eauto using mul_zero_why, field_one_neq_zero.
Qed.
- Lemma mul_inv_l : forall x, not (x == 0) -> inv x * x == 1.
- Proof. intros. field. Qed.
+ Create HintDb field discriminated.
+ Hint Extern 5 (_ == _) => field_simplify_eq; nsatz : field.
+ Hint Extern 5 (_ <-> _) => split.
- Lemma mul_inv_r : forall x, not (x == 0) -> x * inv x == 1.
- Proof. intros. field. Qed.
+ Lemma mul_inv_l : forall x, not (x == 0) -> inv x * x == 1. Proof. auto with field. Qed.
+
+ Lemma mul_inv_r : forall x, not (x == 0) -> x * inv x == 1. Proof. auto with field. Qed.
Lemma mul_cancel_r (x y z:F) : not (z == 0) -> x * z == y * z -> x == y.
Proof.
intros.
assert (x * z * inv z == y * z * inv z) by
- (match goal with [H: _ == _ |- _ ] => rewrite H; field end).
- assert (x * z * inv z == x * (z * inv z)) by field.
- assert (y * z * inv z == y * (z * inv z)) by field.
- rewrite mul_inv_r, @ring_mul_1_r in * by assumption.
- nsatz.
+ (match goal with [H: _ == _ |- _ ] => rewrite H; auto with field end).
+ assert (x * z * inv z == x * (z * inv z)) by auto with field.
+ assert (y * z * inv z == y * (z * inv z)) by auto with field.
+ rewrite mul_inv_r, @ring_mul_1_r in *; auto with field.
Qed.
Lemma mul_cancel_l (x y z:F) : not (z == 0) -> z * x == z * y -> x == y.
- Proof. intros. eapply mul_cancel_r; eauto. nsatz. Qed.
+ Proof. intros. eauto using mul_cancel_r with field. Qed.
- Lemma inv_unique (a:F) : forall x y, x * a == 1 -> y * a == 1 -> x == y.
- Proof. nsatz. Qed.
+ Lemma inv_unique (a:F) : forall x y, x * a == 1 -> y * a == 1 -> x == y. Proof. auto with field. Qed.
Lemma mul_nonzero_nonzero (a b:F) : not (a == 0) -> not (b == 0) -> not (a*b == 0).
- Proof. intros. intro Hab. destruct (mul_zero_why _ _ Hab); intuition. Qed.
+ Proof. intros; intro Hab. destruct (mul_zero_why _ _ Hab); auto. Qed.
+ Hint Resolve mul_nonzero_nonzero : field_nonzero.
+
+ Lemma inv_nonzero (x:F) : not(x == 0) -> not(inv x==0).
+ Proof.
+ intros Hx Hi.
+ assert (Hc:not (inv x*x==0)) by (rewrite field_inv_def; auto with field_nonzero); contradict Hc.
+ ring [Hi].
+ Qed.
+ Hint Resolve inv_nonzero : field_nonzero.
- Lemma sub_diag_iff (x y:F) : x - y == 0 <-> x == y. Proof. split; nsatz. Qed.
+ Lemma div_nonzero (x y:F) : not(x==0) -> not(y==0) -> not(x/y==0).
+ Proof.
+ unfold division, div_notation, div; auto with field_nonzero.
+ Qed.
+ Hint Resolve div_nonzero : field_nonzero.
+
+ Lemma pow_pos_nonzero (x:F) p : not(x==0) -> not(Ncring.pow_pos x p == 0).
+ Proof.
+ intros; induction p using Pos.peano_ind; try assumption; [].
+ rewrite Ncring.pow_pos_succ; eauto using mul_nonzero_nonzero.
+ Qed.
+ Hint Resolve pow_pos_nonzero : field_nonzero.
- Lemma mul_same (x:F) : x*x == x^2%Z. reflexivity. Qed.
+ Lemma sub_diag_iff (x y:F) : x - y == 0 <-> x == y. Proof. auto with field. Qed.
+
+ Lemma mul_same (x:F) : x*x == x^2%Z. Proof. auto with field. Qed.
+
+ Lemma inv_mul (x y:F) : not(x==0) -> not (y==0) -> inv (x*y) == inv x * inv y.
+ Proof. intros;field;intuition. Qed.
+
+ Lemma pow_0_r (x:F) : x^0 == 1. Proof. reflexivity. Qed.
+
+ Lemma pow_succ_r (x:F) (n:Z) : not (x==0)\/(n>=0)%Z -> x^(n+1) == x * x^n.
+ Proof.
+ intros Hnz; unfold power, powZ, power_field, powZ; destruct n eqn:HSn.
+ - simpl; ring.
+ - setoid_rewrite <-Pos2Z.inj_succ; rewrite Ncring.pow_pos_succ; ring.
+ - destruct (Z.succ (Z.neg p)) eqn:Hn.
+ + assert (p=1%positive) by (destruct p; simpl in *; try discriminate; auto).
+ subst; simpl in *; field. destruct Hnz; auto with field_nonzero.
+ + destruct p, p0; discriminate.
+ + setoid_rewrite Hn.
+ apply Z_neg_succ_neg in Hn; subst.
+ rewrite Ncring.pow_pos_succ; field;
+ destruct Hnz; auto with field_nonzero.
+ Qed.
+
+ Lemma pow_pred_r (x:F) (n:Z) : not (x==0) -> x^(n-1) == x^n/x.
+ Proof.
+ intros; unfold power, powZ, power_field, powZ; destruct n eqn:HSn.
+ - simpl. rewrite unfold_div; field.
+ - destruct (Z.pos p - 1) eqn:Hn.
+ + apply Z_pos_pred_0 in Hn; subst; simpl; field.
+ + apply Z_pos_pred_pos in Hn; subst.
+ rewrite Ncring.pow_pos_succ; field; auto with field_nonzero.
+ + destruct p; discriminate.
+ - rewrite Z_pred_neg, Ncring.pow_pos_succ; field; auto with field_nonzero.
+ Qed.
+
+ Ltac pow_peano :=
+ repeat (setoid_rewrite pow_0_r
+ || setoid_rewrite pow_succ_r
+ || setoid_rewrite pow_pred_r).
+
+ Lemma pow_mul (x y:F) : forall (n:Z), not(x==0)/\not(y==0)\/(n>=0)%Z -> (x * y)^n == x^n * y^n.
+ Proof.
+ match goal with |- forall n, @?P n => eapply (Z.order_induction'_0 P) end.
+ { repeat intro. subst. reflexivity. }
+ - intros; cbv [power power_field powZ]; ring.
+ - intros n Hn IH Hxy.
+ repeat setoid_rewrite pow_succ_r; try rewrite IH; try ring; (right; omega).
+ - intros n Hn IH Hxy. destruct Hxy as [[]|?]; try omega; [].
+ repeat setoid_rewrite pow_pred_r; try rewrite IH; try field; auto with field_nonzero.
+ Qed.
+
+ Lemma pow_nonzero (x:F) : forall (n:Z), not(x==0) -> not(x^n==0).
+ match goal with |- forall n, @?P n => eapply (Z.order_induction'_0 P) end; intros; pow_peano;
+ auto with field_nonzero.
+ { repeat intro. subst. reflexivity. }
+ Qed.
+ Hint Resolve pow_nonzero : field_nonzero.
+ Lemma pow_inv (x:F) : forall (n:Z), not(x==0) -> inv x^n == inv (x^n).
+ match goal with |- forall n, @?P n => eapply (Z.order_induction'_0 P) end.
+ { repeat intro. subst. reflexivity. }
+ - intros; cbv [power power_field powZ]. field.
+ - intros n Hn IH Hx.
+ repeat setoid_rewrite pow_succ_r; try rewrite IH; try field; auto with field_nonzero.
+ - intros n Hn IH Hx.
+ repeat setoid_rewrite pow_pred_r; try rewrite IH; try field; auto 3 with field_nonzero.
+ Qed.
+
+ Lemma pow_0_l : forall n, (n>0)%Z -> (0:F)^n==0.
+ match goal with |- forall n, @?P n => eapply (Z.order_induction'_0 P) end; intros; try omega.
+ { repeat intro. subst. reflexivity. }
+ setoid_rewrite pow_succ_r; [auto with field|right;omega].
+ Qed.
+
+ Lemma pow_div (x y:F) (n:Z) : not (y==0) -> not(x==0)\/(n >= 0)%Z -> (x/y)^n == x^n/y^n.
+ Proof.
+ intros Hy Hxn. unfold division, div_notation, div.
+ rewrite pow_mul, pow_inv; try field; destruct Hxn; auto with field_nonzero.
+ Qed.
+
+ Hint Extern 3 (_ >= _)%Z => omega : field_nonzero.
Lemma issquare_mul (x y z:F) : not (y == 0) -> x^2%Z == z * y^2%Z -> (x/y)^2%Z == z.
- Proof. intros. rewrite <-!mul_same; field_simplify_eq; nsatz. Qed.
+ Proof. intros. rewrite pow_div by (auto with field_nonzero); auto with field. Qed.
Lemma issquare_mul_sub (x y z:F) : 0 == z*y^2%Z - x^2%Z -> (x/y)^2%Z == z \/ x == 0.
- Proof.
- destruct (eq_dec y 0); [right|left].
- -
+ Proof. destruct (eq_dec y 0); [right|left]; auto using issquare_mul with field. Qed. \ No newline at end of file