aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorGravatar Jason Gross <jasongross9@gmail.com>2016-09-05 15:31:28 -0700
committerGravatar GitHub <noreply@github.com>2016-09-05 15:31:28 -0700
commit02c9314745f8105043833ef46c683b5ba7486e6a (patch)
tree58de40daa8765ca9a56d3b2f994f17830c7ebd59 /src
parentaa98370ba6165fb1f96b89645044ef13880bcf74 (diff)
parent03625062aadec037ef8738d9655ef69089a812f9 (diff)
Merge pull request #60 from JasonGross/common-phoas
Common PHOAS syntax
Diffstat (limited to 'src')
-rw-r--r--src/Reflection/InputSyntax.v130
-rw-r--r--src/Reflection/InterpProofs.v29
-rw-r--r--src/Reflection/Linearize.v101
-rw-r--r--src/Reflection/Reify.v249
-rw-r--r--src/Reflection/Syntax.v208
-rw-r--r--src/Reflection/TestCase.v119
-rw-r--r--src/Reflection/WfReflective.v507
7 files changed, 1343 insertions, 0 deletions
diff --git a/src/Reflection/InputSyntax.v b/src/Reflection/InputSyntax.v
new file mode 100644
index 000000000..c3c796d75
--- /dev/null
+++ b/src/Reflection/InputSyntax.v
@@ -0,0 +1,130 @@
+(** * PHOAS Representation of Gallina which allows exact denotation *)
+Require Import Coq.Strings.String.
+Require Import Crypto.Reflection.Syntax.
+Require Import Crypto.Reflection.InterpProofs.
+Require Import Crypto.Util.Tuple.
+Require Import Crypto.Util.Tactics.
+Require Import Crypto.Util.Notations.
+
+(** We parameterize the language over a type of basic type codes (for
+ things like [Z], [word], [bool]), as well as a type of n-ary
+ operations returning one value, and n-ary operations returning two
+ values. *)
+Local Open Scope ctype_scope.
+Section language.
+ Context (base_type_code : Type).
+
+ Local Notation flat_type := (flat_type base_type_code).
+ Local Notation type := (type base_type_code).
+ Local Notation Tbase := (@Tbase base_type_code).
+
+ Section expr_param.
+ Context (interp_base_type : base_type_code -> Type).
+ Context (op : flat_type (* input tuple *) -> flat_type (* output type *) -> Type).
+ Local Notation interp_type := (interp_type interp_base_type).
+ Local Notation interp_flat_type := (interp_flat_type_gen interp_base_type).
+ Section expr.
+ Context {var : flat_type -> Type}.
+
+ (** N.B. [Let] destructures pairs *)
+ Inductive exprf : flat_type -> Type :=
+ | Const {t : flat_type} : interp_type t -> exprf t
+ | Var {t} : var t -> exprf t
+ | Op {t1 tR} : op t1 tR -> exprf t1 -> exprf tR
+ | Let : forall {tx}, exprf tx -> forall {tC}, (var tx -> exprf tC) -> exprf tC
+ | Pair : forall {t1}, exprf t1 -> forall {t2}, exprf t2 -> exprf (Prod t1 t2)
+ | MatchPair : forall {t1 t2}, exprf (Prod t1 t2) -> forall {tC}, (var t1 -> var t2 -> exprf tC) -> exprf tC.
+ Inductive expr : type -> Type :=
+ | Return {t} : exprf t -> expr t
+ | Abs {src dst} : (var (Tbase src) -> expr dst) -> expr (Arrow src dst).
+ Global Coercion Return : exprf >-> expr.
+ End expr.
+
+ Definition Expr (t : type) := forall var, @expr var t.
+
+ Section interp.
+ Context (interp_op : forall src dst, op src dst -> interp_flat_type src -> interp_flat_type dst).
+
+ Fixpoint interpf {t} (e : @exprf interp_flat_type t) : interp_flat_type t
+ := match e in exprf t return interp_flat_type t with
+ | Const _ x => x
+ | Var _ x => x
+ | Op _ _ op args => @interp_op _ _ op (@interpf _ args)
+ | Let _ ex _ eC => let x := @interpf _ ex in @interpf _ (eC x)
+ | Pair _ ex _ ey => (@interpf _ ex, @interpf _ ey)
+ | MatchPair _ _ ex _ eC => match @interpf _ ex with pair x y => @interpf _ (eC x y) end
+ end.
+ Fixpoint interp {t} (e : @expr interp_type t) : interp_type t
+ := match e in expr t return interp_type t with
+ | Return _ x => interpf x
+ | Abs _ _ f => fun x => @interp _ (f x)
+ end.
+
+ Definition Interp {t} (E : Expr t) : interp_type t := interp (E _).
+ End interp.
+
+ Section compile.
+ Context {var : base_type_code -> Type}.
+
+ Fixpoint compilef {t} (e : @exprf (interp_flat_type_gen var) t) : @Syntax.exprf base_type_code interp_base_type op var t
+ := match e in exprf t return @Syntax.exprf _ _ _ _ t with
+ | Const _ x => Syntax.Const x
+ | Var _ x => Syntax.SmartVar x
+ | Op _ _ op args => Syntax.Op op (@compilef _ args)
+ | Let _ ex _ eC => Syntax.Let (@compilef _ ex) (fun x => @compilef _ (eC x))
+ | Pair _ ex _ ey => Syntax.Pair (@compilef _ ex) (@compilef _ ey)
+ | MatchPair _ _ ex _ eC => Syntax.Let (@compilef _ ex) (fun xy => @compilef _ (eC (fst xy) (snd xy)))
+ end.
+
+ Fixpoint compile {t} (e : @expr (interp_flat_type_gen var) t) : @Syntax.expr base_type_code interp_base_type op var t
+ := match e in expr t return @Syntax.expr _ _ _ _ t with
+ | Return _ x => Syntax.Return (compilef x)
+ | Abs a _ f => Syntax.Abs (fun x : var a => @compile _ (f x))
+ end.
+ End compile.
+
+ Definition Compile {t} (e : Expr t) : Syntax.Expr base_type_code interp_base_type op t
+ := fun var => compile (e _).
+
+ Section compile_correct.
+ Context (interp_op : forall src dst, op src dst -> interp_flat_type src -> interp_flat_type dst).
+
+ Lemma compilef_correct {t} (e : @exprf interp_flat_type t)
+ : Syntax.interpf base_type_code interp_base_type op interp_op (compilef e) = interpf interp_op e.
+ Proof.
+ induction e;
+ repeat match goal with
+ | _ => reflexivity
+ | _ => progress simpl in *
+ | _ => rewrite interpf_SmartVar
+ | _ => rewrite <- surjective_pairing
+ | _ => progress rewrite_hyp *
+ | [ |- context[let (x, y) := ?v in _] ]
+ => rewrite (surjective_pairing v); cbv beta iota
+ end.
+ Qed.
+
+ Lemma Compile_correct {t : flat_type} (e : @Expr t)
+ : Syntax.Interp base_type_code interp_base_type op interp_op (Compile e) = Interp interp_op e.
+ Proof.
+ unfold Interp, Compile, Syntax.Interp; simpl.
+ pose (e (interp_flat_type_gen interp_base_type)) as E.
+ repeat match goal with |- context[e ?f] => change (e f) with E end.
+ refine match E with
+ | Abs _ _ _ => fun x : Prop => x (* small inversions *)
+ | Return _ _ => _
+ end.
+ apply compilef_correct.
+ Qed.
+ End compile_correct.
+ End expr_param.
+End language.
+
+Global Arguments Const {_ _ _ _ _} _.
+Global Arguments Var {_ _ _ _ _} _.
+Global Arguments Op {_ _ _ _ _ _} _ _.
+Global Arguments Let {_ _ _ _ _} _ {_} _.
+Global Arguments MatchPair {_ _ _ _ _ _} _ {_} _.
+Global Arguments Pair {_ _ _ _ _} _ {_} _.
+Global Arguments Return {_ _ _ _ _} _.
+Global Arguments Abs {_ _ _ _ _ _} _.
diff --git a/src/Reflection/InterpProofs.v b/src/Reflection/InterpProofs.v
new file mode 100644
index 000000000..5790178e7
--- /dev/null
+++ b/src/Reflection/InterpProofs.v
@@ -0,0 +1,29 @@
+Require Import Crypto.Reflection.Syntax.
+Require Import Crypto.Util.Tactics.
+
+Local Open Scope ctype_scope.
+Section language.
+ Context (base_type_code : Type).
+
+ Local Notation flat_type := (flat_type base_type_code).
+ Local Notation type := (type base_type_code).
+ Let Tbase := @Tbase base_type_code.
+ Local Coercion Tbase : base_type_code >-> Syntax.flat_type.
+ Context (interp_base_type : base_type_code -> Type).
+ Context (op : flat_type (* input tuple *) -> flat_type (* output type *) -> Type).
+ Let interp_type := interp_type interp_base_type.
+ Let interp_flat_type := interp_flat_type_gen interp_base_type.
+ Context (interp_op : forall src dst, op src dst -> interp_flat_type src -> interp_flat_type dst).
+
+ Lemma interpf_SmartVar t v
+ : Syntax.interpf base_type_code interp_base_type op interp_op (SmartVar (t:=t) v) = v.
+ Proof.
+ unfold SmartVar; induction t;
+ repeat match goal with
+ | _ => reflexivity
+ | _ => progress simpl in *
+ | _ => progress rewrite_hyp *
+ | _ => rewrite <- surjective_pairing
+ end.
+ Qed.
+End language.
diff --git a/src/Reflection/Linearize.v b/src/Reflection/Linearize.v
new file mode 100644
index 000000000..b3ce3249b
--- /dev/null
+++ b/src/Reflection/Linearize.v
@@ -0,0 +1,101 @@
+(** * Linearize: Place all and only operations in let binders *)
+Require Import Crypto.Reflection.Syntax.
+Require Import Crypto.Util.Tactics.
+
+Local Open Scope ctype_scope.
+Section language.
+ Context (base_type_code : Type).
+ Context (interp_base_type : base_type_code -> Type).
+ Context (op : flat_type base_type_code -> flat_type base_type_code -> Type).
+
+ Local Notation flat_type := (flat_type base_type_code).
+ Local Notation type := (type base_type_code).
+ Let Tbase := @Tbase base_type_code.
+ Local Coercion Tbase : base_type_code >-> Syntax.flat_type.
+ Let interp_type := interp_type interp_base_type.
+ Let interp_flat_type := interp_flat_type_gen interp_base_type.
+ Local Notation Expr := (@Expr base_type_code interp_base_type op).
+
+ Section with_var.
+ Context {var : base_type_code -> Type}.
+ Local Notation exprf := (@exprf base_type_code interp_base_type op var).
+ Local Notation expr := (@expr base_type_code interp_base_type op var).
+
+ Section under_lets.
+ Fixpoint let_bind_const {t} (e : interp_flat_type t) {struct t}
+ : forall {tC} (C : interp_flat_type_gen var t -> exprf tC), exprf tC
+ := match t return forall (e : interp_flat_type t) {tC} (C : interp_flat_type_gen var t -> exprf tC), exprf tC with
+ | Prod A B => fun e _ C => @let_bind_const A (fst e) _ (fun x =>
+ @let_bind_const B (snd e) _ (fun y =>
+ C (x, y)))
+ | Syntax.Tbase _ => fun e _ C => Let (Const e) C
+ end e.
+
+ Fixpoint under_letsf {t} (e : exprf t)
+ : forall {tC} (C : interp_flat_type_gen var t -> exprf tC), exprf tC
+ := match e in Syntax.exprf _ _ _ t return forall {tC} (C : interp_flat_type_gen var t -> exprf tC), exprf tC with
+ | Let _ ex _ eC
+ => fun _ C => @under_letsf _ ex _ (fun v => @under_letsf _ (eC v) _ C)
+ | Const _ x => fun _ C => let_bind_const x C
+ | Var _ x => fun _ C => C x
+ | Op _ _ op args as e => fun _ C => Let e C
+ | Pair A x B y => fun _ C => @under_letsf A x _ (fun x =>
+ @under_letsf B y _ (fun y =>
+ C (x, y)))
+ end.
+ End under_lets.
+
+ Fixpoint linearizef {t} (e : exprf t) : exprf t
+ := match e in Syntax.exprf _ _ _ t return exprf t with
+ | Let _ ex _ eC
+ => under_letsf (@linearizef _ ex) (fun x => @linearizef _ (eC x))
+ | Const _ x => Const x
+ | Var _ x => Var x
+ | Op _ _ op args
+ => under_letsf (@linearizef _ args) (fun args => Let (Op op (SmartVar args)) SmartVar)
+ | Pair A ex B ey
+ => under_letsf (@linearizef _ ex) (fun x =>
+ under_letsf (@linearizef _ ey) (fun y =>
+ SmartVar (t:=Prod A B) (x, y)))
+ end.
+
+ Fixpoint linearize {t} (e : expr t) : expr t
+ := match e in Syntax.expr _ _ _ t return expr t with
+ | Return _ x => linearizef x
+ | Abs _ _ f => Abs (fun x => @linearize _ (f x))
+ end.
+ End with_var.
+
+ Section inline.
+ Context {var : base_type_code -> Type}.
+ Local Notation exprf := (@exprf base_type_code interp_base_type op).
+ Local Notation expr := (@expr base_type_code interp_base_type op).
+
+ Fixpoint inline_constf {t} (e : @exprf (@exprf var) t) : @exprf var t
+ := match e in Syntax.exprf _ _ _ t return @exprf var t with
+ | Let _ ex tC eC
+ => match @inline_constf _ ex in Syntax.exprf _ _ _ t' return (interp_flat_type_gen _ t' -> @exprf var tC) -> @exprf var tC with
+ | Const _ x => fun eC => eC (SmartConst (op:=op) (var:=var) x)
+ | ex => fun eC => Let ex (fun x => eC (SmartVarVar x))
+ end (fun x => @inline_constf _ (eC x))
+ | Var _ x => x
+ | Const _ x => Const x
+ | Pair _ ex _ ey => Pair (@inline_constf _ ex) (@inline_constf _ ey)
+ | Op _ _ op args => Op op (@inline_constf _ args)
+ end.
+
+ Fixpoint inline_const {t} (e : @expr (@exprf var) t) : @expr var t
+ := match e in Syntax.expr _ _ _ t return @expr var t with
+ | Return _ x => Return (inline_constf x)
+ | Abs _ _ f => Abs (fun x => @inline_const _ (f (Var x)))
+ end.
+ End inline.
+
+ Definition Linearize {t} (e : Expr t) : Expr t
+ := fun var => linearize (e _).
+ Definition InlineConst {t} (e : Expr t) : Expr t
+ := fun var => inline_const (e _).
+End language.
+
+Arguments Linearize {_ _ _ _} _ var.
+Arguments InlineConst {_ _ _ _} _ var.
diff --git a/src/Reflection/Reify.v b/src/Reflection/Reify.v
new file mode 100644
index 000000000..1eac17675
--- /dev/null
+++ b/src/Reflection/Reify.v
@@ -0,0 +1,249 @@
+(** * Exact reification of PHOAS Representation of Gallina *)
+(** The reification procedure goes through [InputSyntax], which allows
+ judgmental equality of the denotation of the reified term. *)
+Require Import Coq.Strings.String.
+Require Import Crypto.Reflection.Syntax.
+Require Export Crypto.Reflection.InputSyntax.
+Require Import Crypto.Util.Tuple.
+Require Import Crypto.Util.Tactics.
+Require Import Crypto.Util.Notations.
+
+Class reify {varT} (var : varT) {eT} (e : eT) {T : Type} := Build_reify : T.
+Definition reify_var_for_in_is base_type_code {T} (x : T) (t : flat_type base_type_code) {eT} (e : eT) := False.
+Arguments reify_var_for_in_is _ {T} _ _ {eT} _.
+
+(** [reify] assumes that operations can be reified via the [reify_op]
+ typeclass, which gets passed the type family of operations, the
+ expression which is headed by an operation, and expects resolution
+ to fill in a number of arguments (which [reifyf] will
+ automatically curry), as well as the reified operator.
+
+ We also assume that types can be reified via the [reify] typeclass
+ with arguments [reify type <type to be reified>]. *)
+Class reify_op {opTF} (op_family : opTF) {opExprT} (opExpr : opExprT) (nargs : nat) {opT} (reified_op : opT)
+ := Build_reify_op : True.
+Ltac strip_type_cast term := lazymatch term with ?term' => term' end.
+Ltac reify_type T :=
+ lazymatch T with
+ | (?A -> ?B)%type
+ => let a := reify_type A in
+ let b := reify_type B in
+ constr:(@Arrow _ a b)
+ | prod ?A ?B
+ => let a := reify_type A in
+ let b := reify_type B in
+ constr:(@Prod _ a b)
+ | _
+ => let v := strip_type_cast (_ : reify type T) in
+ constr:(Tbase v)
+ end.
+Ltac reify_base_type T :=
+ let t := reify_type T in
+ lazymatch t with
+ | Tbase ?t => t
+ | ?t => t
+ end.
+
+Ltac reifyf_var x mkVar :=
+ lazymatch goal with
+ | _ : reify_var_for_in_is _ x ?t ?v |- _ => mkVar t v
+ | _ => lazymatch x with
+ | fst ?x' => reifyf_var x' ltac:(fun t v => lazymatch t with
+ | Prod ?A ?B => mkVar A (fst v)
+ end)
+ | snd ?x' => reifyf_var x' ltac:(fun t v => lazymatch t with
+ | Prod ?A ?B => mkVar B (snd v)
+ end)
+ end
+ end.
+
+Inductive reify_result_helper :=
+| finished_value {T} (res : T)
+| op_info {T} (res : T)
+| reification_unsuccessful.
+
+(** Change this with [Ltac reify_debug_level ::= constr:(1).] to get
+ more debugging. *)
+Ltac reify_debug_level := constr:(0).
+Module Import ReifyDebugNotations.
+ Open Scope string_scope.
+End ReifyDebugNotations.
+
+Ltac debug_enter_reifyf e :=
+ let lvl := reify_debug_level in
+ match lvl with
+ | S (S _) => cidtac2 "reifyf: Attempting to reify:" e
+ | _ => constr:(Set)
+ end.
+Ltac debug_enter_reify_abs e :=
+ let lvl := reify_debug_level in
+ match lvl with
+ | S (S _) => cidtac2 "reify_abs: Attempting to reify:" e
+ | _ => constr:(Set)
+ end.
+
+Ltac debug_enter_reify_rec :=
+ let lvl := reify_debug_level in
+ match lvl with
+ | S _ => idtac_goal
+ | _ => idtac
+ end.
+Ltac debug_leave_reify_rec e :=
+ let lvl := reify_debug_level in
+ match lvl with
+ | S _ => idtac "<infomsg>reifyf success:" e "</infomsg>"
+ | _ => idtac
+ end.
+
+Ltac reifyf base_type_code interp_base_type op var e :=
+ let reify_rec e := reifyf base_type_code interp_base_type op var e in
+ let mkLet ex eC := constr:(Let (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ex eC) in
+ let mkPair ex ey := constr:(Pair (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) ex ey) in
+ let mkVar T ex := constr:(Var (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (t:=T) ex) in
+ let mkConst T ex := constr:(Const (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (t:=T) ex) in
+ let mkOp T retT op_code args := constr:(Op (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (t1:=T) (tR:=retT) op_code args) in
+ let mkMatchPair tC ex eC := constr:(MatchPair (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (tC:=tC) ex eC) in
+ let reify_tag := constr:(@exprf base_type_code interp_base_type op var) in
+ let dummy := debug_enter_reifyf e in
+ lazymatch e with
+ | let x := ?ex in @?eC x =>
+ let ex := reify_rec ex in
+ let eC := reify_rec eC in
+ mkLet ex eC
+ | pair ?a ?b =>
+ let a := reify_rec a in
+ let b := reify_rec b in
+ mkPair a b
+ | (fun x : ?T => ?C) =>
+ let t := reify_type T in
+ (* Work around Coq 8.5 and 8.6 bug *)
+ (* <https://coq.inria.fr/bugs/show_bug.cgi?id=4998> *)
+ (* Avoid re-binding the Gallina variable referenced by Ltac [x] *)
+ (* even if its Gallina name matches a Ltac in this tactic. *)
+ let maybe_x := fresh x in
+ let not_x := fresh x in
+ lazymatch constr:(fun (x : T) (not_x : var t) (_ : reify_var_for_in_is base_type_code x t not_x) =>
+ (_ : reify reify_tag C)) (* [C] here is an open term that references "x" by name *)
+ with fun _ v _ => @?C v => C end
+ | match ?ev with pair a b => @?eC a b end =>
+ let t := (let T := match type of eC with _ -> _ -> ?T => T end in reify_type T) in
+ let v := reify_rec ev in
+ let C := reify_rec eC in
+ mkMatchPair t v C
+ | ?x =>
+ let t := lazymatch type of x with ?t => reify_type t end in
+ let retv := match constr:(Set) with
+ | _ => let retv := reifyf_var x mkVar in constr:(finished_value retv)
+ | _ => let r := constr:(_ : reify_op op x _ _) in
+ let t := type of r in
+ constr:(op_info t)
+ | _ => let c := mkConst t x in
+ constr:(finished_value c)
+ | _ => constr:(reification_unsuccessful)
+ end in
+ lazymatch retv with
+ | finished_value ?v => v
+ | op_info (reify_op _ _ ?nargs ?op_code)
+ => let tR := (let tR := type of x in reify_type tR) in
+ lazymatch nargs with
+ | 1%nat
+ => lazymatch x with
+ | ?f ?x0
+ => let a0T := (let t := type of x0 in reify_type t) in
+ let a0 := reify_rec x0 in
+ mkOp a0T tR op_code a0
+ end
+ | 2%nat
+ => lazymatch x with
+ | ?f ?x0 ?x1
+ => let a0T := (let t := type of x0 in reify_type t) in
+ let a0 := reify_rec x0 in
+ let a1T := (let t := type of x1 in reify_type t) in
+ let a1 := reify_rec x1 in
+ let args := mkPair a0 a1 in
+ mkOp (@Prod _ a0T a1T) tR op_code args
+ end
+ | 3%nat
+ => lazymatch x with
+ | ?f ?x0 ?x1 ?x2
+ => let a0T := (let t := type of x0 in reify_type t) in
+ let a0 := reify_rec x0 in
+ let a1T := (let t := type of x1 in reify_type t) in
+ let a1 := reify_rec x1 in
+ let a2T := (let t := type of x2 in reify_type t) in
+ let a2 := reify_rec x2 in
+ let args := let a01 := mkPair a0 a1 in mkPair a01 a2 in
+ mkOp (@Prod _ (@Prod _ a0T a1T) a2T) tR op_code args
+ end
+ | _ => cfail2 "Unsupported number of operation arguments in reifyf:"%string nargs
+ end
+ | reification_unsuccessful
+ => cfail2 "Failed to reify:"%string x
+ end
+ end.
+
+Hint Extern 0 (reify (@exprf ?base_type_code ?interp_base_type ?op ?var) ?e)
+=> (debug_enter_reify_rec; let e := reifyf base_type_code interp_base_type op var e in debug_leave_reify_rec e; eexact e) : typeclass_instances.
+
+(** For reification including [Abs] *)
+Class reify_abs {varT} (var : varT) {eT} (e : eT) {T : Type} := Build_reify_abs : T.
+Ltac reify_abs base_type_code interp_base_type op var e :=
+ let reify_rec e := reify_abs base_type_code interp_base_type op var e in
+ let reifyf_term e := reifyf base_type_code interp_base_type op var e in
+ let mkAbs src ef := constr:(Abs (base_type_code:=base_type_code) (interp_base_type:=interp_base_type) (op:=op) (var:=var) (src:=src) ef) in
+ let reify_tag := constr:(@exprf base_type_code interp_base_type op var) in
+ let dummy := debug_enter_reify_abs e in
+ lazymatch e with
+ | (fun x : ?T => ?C) =>
+ let t := reify_base_type T in
+ (* Work around Coq 8.5 and 8.6 bug *)
+ (* <https://coq.inria.fr/bugs/show_bug.cgi?id=4998> *)
+ (* Avoid re-binding the Gallina variable referenced by Ltac [x] *)
+ (* even if its Gallina name matches a Ltac in this tactic. *)
+ let maybe_x := fresh x in
+ let not_x := fresh x in
+ lazymatch constr:(fun (x : T) (not_x : var (Tbase t)) (_ : reify_var_for_in_is base_type_code x (Tbase t) not_x) =>
+ (_ : reify_abs reify_tag C)) (* [C] here is an open term that references "x" by name *)
+ with fun _ v _ => @?C v => mkAbs t C end
+ | ?x =>
+ reifyf_term x
+ end.
+
+Hint Extern 0 (reify_abs (@exprf ?base_type_code ?interp_base_type ?op ?var) ?e)
+=> (debug_enter_reify_rec; let e := reify_abs base_type_code interp_base_type op var e in debug_leave_reify_rec e; eexact e) : typeclass_instances.
+
+Ltac Reify' base_type_code interp_base_type op e :=
+ lazymatch constr:(fun (var : flat_type base_type_code -> Type) => (_ : reify_abs (@exprf base_type_code interp_base_type op var) e)) with
+ (fun var => ?C) => constr:(fun (var : flat_type base_type_code -> Type) => C) (* copy the term but not the type cast *)
+ end.
+Ltac Reify base_type_code interp_base_type op e :=
+ let r := Reify' base_type_code interp_base_type op e in
+ constr:(InputSyntax.Compile base_type_code interp_base_type op r).
+
+Ltac lhs_of_goal := lazymatch goal with |- ?R ?LHS ?RHS => LHS end.
+Ltac rhs_of_goal := lazymatch goal with |- ?R ?LHS ?RHS => RHS end.
+
+Ltac Reify_rhs base_type_code interp_base_type op interp_op :=
+ let rhs := rhs_of_goal in
+ let RHS := Reify base_type_code interp_base_type op rhs in
+ transitivity (Syntax.Interp base_type_code interp_base_type op interp_op RHS);
+ [
+ | etransitivity; (* first we strip off the [InputSyntax.Compile]
+ bit; Coq is bad at inferring the type, so we
+ help it out by providing it *)
+ [ lazymatch goal with
+ | [ |- @Syntax.Interp ?base_type_code ?interp_base_type ?op ?interp_op (@Tflat _ ?t) (@Compile _ _ _ _ ?e) = _ ]
+ => exact (@InputSyntax.Compile_correct base_type_code interp_base_type op interp_op t e)
+ end
+ | ((* now we unfold the interpretation function, including the
+ parameterized bits; we assume that [hnf] is enough to unfold
+ the interpretation functions that we're parameterized
+ over. *)
+ lazymatch goal with
+ | [ |- @InputSyntax.Interp ?base_type_code ?interp_base_type ?op ?interp_op ?t ?e = _ ]
+ => let interp_base_type' := (eval hnf in interp_base_type) in
+ let interp_op' := (eval hnf in interp_op) in
+ change interp_base_type with interp_base_type';
+ change interp_op with interp_op'
+ end;
+ cbv iota beta delta [InputSyntax.Interp interp_type interp_type_gen interp_flat_type_gen interp interpf]; simplify_projections; reflexivity) ] ].
diff --git a/src/Reflection/Syntax.v b/src/Reflection/Syntax.v
new file mode 100644
index 000000000..d14705979
--- /dev/null
+++ b/src/Reflection/Syntax.v
@@ -0,0 +1,208 @@
+(** * PHOAS Representation of Gallina *)
+Require Import Coq.Strings.String.
+Require Import Crypto.Util.Tuple.
+Require Import Crypto.Util.Tactics.
+Require Import Crypto.Util.Notations.
+
+(** We parameterize the language over a type of basic type codes (for
+ things like [Z], [word], [bool]), as well as a type of n-ary
+ operations returning one value, and n-ary operations returning two
+ values. *)
+Delimit Scope ctype_scope with ctype.
+Local Open Scope ctype_scope.
+Delimit Scope expr_scope with expr.
+Local Open Scope expr_scope.
+Section language.
+ Context (base_type_code : Type).
+
+ Inductive flat_type := Tbase (_ : base_type_code) | Prod (x y : flat_type).
+ Bind Scope ctype_scope with flat_type.
+
+ Inductive type := Tflat (_ : flat_type) | Arrow (x : base_type_code) (y : type).
+ Bind Scope ctype_scope with type.
+
+ Global Coercion Tflat : flat_type >-> type.
+ Infix "*" := Prod : ctype_scope.
+ Notation "A -> B" := (Arrow A B) : ctype_scope.
+ Local Coercion Tbase : base_type_code >-> flat_type.
+
+ Section interp.
+ Section type.
+ Context (interp_flat_type : flat_type -> Type).
+ Fixpoint interp_type_gen (t : type) :=
+ match t with
+ | Tflat t => interp_flat_type t
+ | Arrow x y => (interp_flat_type x -> interp_type_gen y)%type
+ end.
+ End type.
+ Section flat_type.
+ Context (interp_base_type : base_type_code -> Type).
+ Fixpoint interp_flat_type_gen (t : flat_type) :=
+ match t with
+ | Tbase t => interp_base_type t
+ | Prod x y => prod (interp_flat_type_gen x) (interp_flat_type_gen y)
+ end.
+ Definition interp_type := interp_type_gen interp_flat_type_gen.
+ End flat_type.
+ End interp.
+
+ Section expr_param.
+ Context (interp_base_type : base_type_code -> Type).
+ Context (op : flat_type (* input tuple *) -> flat_type (* output type *) -> Type).
+ Local Notation interp_type := (interp_type interp_base_type).
+ Local Notation interp_flat_type := (interp_flat_type_gen interp_base_type).
+ Section expr.
+ Context {var : base_type_code -> Type}.
+
+ (** N.B. [Let] binds the components of a pair to separate variables, and does so recursively *)
+ Inductive exprf : flat_type -> Type :=
+ | Const {t : flat_type} : interp_type t -> exprf t
+ | Var {t} : var t -> exprf t
+ | Op {t1 tR} : op t1 tR -> exprf t1 -> exprf tR
+ | Let : forall {tx}, exprf tx -> forall {tC}, (interp_flat_type_gen var tx -> exprf tC) -> exprf tC
+ | Pair : forall {t1}, exprf t1 -> forall {t2}, exprf t2 -> exprf (Prod t1 t2).
+ Bind Scope expr_scope with exprf.
+ Inductive expr : type -> Type :=
+ | Return {t} : exprf t -> expr t
+ | Abs {src dst} : (var src -> expr dst) -> expr (Arrow src dst).
+ Bind Scope expr_scope with expr.
+ Global Coercion Return : exprf >-> expr.
+ (** Sometimes, we want to deal with partially-interpreted
+ expressions, things like [prod (exprf A) (exprf B)] rather
+ than [exprf (Prod A B)], or like [prod (var A) (var B)] when
+ we start with the type [Prod A B]. These convenience
+ functions let us recurse on the type in only one place, and
+ replace one kind of pairing operator (be it [pair] or [Pair]
+ or anything else) with another kind, and simultaneously
+ mapping a function over the base values (e.g., [Var] (for
+ turning [var] into [exprf]) or [Const] (for turning
+ [interp_base_type] into [exprf])). *)
+ Fixpoint smart_interp_flat_map {f g}
+ (h : forall x, f x -> g (Tbase x))
+ (pair : forall A B, g A -> g B -> g (Prod A B))
+ {t}
+ : interp_flat_type_gen f t -> g t
+ := match t return interp_flat_type_gen f t -> g t with
+ | Tbase _ => h _
+ | Prod A B => fun v => pair _ _
+ (@smart_interp_flat_map f g h pair A (fst v))
+ (@smart_interp_flat_map f g h pair B (snd v))
+ end.
+ (** [SmartVar] is like [Var], except that it inserts
+ pair-projections and [Pair] as necessary to handle
+ [flat_type], and not just [base_type_code] *)
+ Definition SmartVar {t} : interp_flat_type_gen var t -> exprf t
+ := @smart_interp_flat_map var exprf (fun t => Var) (fun A B x y => Pair x y) t.
+ Definition SmartVarVar {t} : interp_flat_type_gen var t -> interp_flat_type_gen exprf t
+ := @smart_interp_flat_map var (interp_flat_type_gen exprf) (fun t => Var) (fun A B x y => pair x y) t.
+ Definition SmartConst {t} : interp_flat_type t -> interp_flat_type_gen exprf t
+ := @smart_interp_flat_map _ (interp_flat_type_gen exprf) (fun t => Const) (fun A B x y => pair x y) t.
+ End expr.
+
+ Definition Expr (t : type) := forall var, @expr var t.
+
+ Section interp.
+ Context (interp_op : forall src dst, op src dst -> interp_flat_type src -> interp_flat_type dst).
+
+ Fixpoint interpf {t} (e : @exprf interp_flat_type t) : interp_flat_type t
+ := match e in exprf t return interp_flat_type t with
+ | Const _ x => x
+ | Var _ x => x
+ | Op _ _ op args => @interp_op _ _ op (@interpf _ args)
+ | Let _ ex _ eC => let x := @interpf _ ex in @interpf _ (eC x)
+ | Pair _ ex _ ey => (@interpf _ ex, @interpf _ ey)
+ end.
+ Fixpoint interp {t} (e : @expr interp_type t) : interp_type t
+ := match e in expr t return interp_type t with
+ | Return _ x => interpf x
+ | Abs _ _ f => fun x => @interp _ (f x)
+ end.
+
+ Definition Interp {t} (E : Expr t) : interp_type t := interp (E _).
+ End interp.
+
+ Section map.
+ Context {var1 var2 : base_type_code -> Type}.
+ Context (fvar12 : forall t, var1 t -> var2 t)
+ (fvar21 : forall t, var2 t -> var1 t).
+
+ Fixpoint mapf_interp_flat_type_gen {t} (e : interp_flat_type_gen var2 t) {struct t}
+ : interp_flat_type_gen var1 t
+ := match t return interp_flat_type_gen _ t -> interp_flat_type_gen _ t with
+ | Tbase _ => fvar21 _
+ | Prod x y => fun xy => (@mapf_interp_flat_type_gen _ (fst xy),
+ @mapf_interp_flat_type_gen _ (snd xy))
+ end e.
+
+ Fixpoint mapf {t} (e : @exprf var1 t) : @exprf var2 t
+ := match e in exprf t return exprf t with
+ | Const _ x => Const x
+ | Var _ x => Var (fvar12 _ x)
+ | Op _ _ op args => Op op (@mapf _ args)
+ | Let _ ex _ eC => Let (@mapf _ ex) (fun x => @mapf _ (eC (mapf_interp_flat_type_gen x)))
+ | Pair _ ex _ ey => Pair (@mapf _ ex) (@mapf _ ey)
+ end.
+ End map.
+
+ Section wf.
+ Context {var1 var2 : base_type_code -> Type}.
+
+ Local Notation eP := (fun t => var1 t * var2 t)%type (only parsing).
+ Local Notation "x == y" := (existT eP _ (x, y)).
+ Fixpoint flatten_binding_list {t} (x : interp_flat_type_gen var1 t) (y : interp_flat_type_gen var2 t) : list (sigT eP)
+ := (match t return interp_flat_type_gen var1 t -> interp_flat_type_gen var2 t -> list _ with
+ | Tbase _ => fun x y => (x == y) :: nil
+ | Prod t0 t1 => fun x y => @flatten_binding_list _ (fst x) (fst y) ++ @flatten_binding_list _ (snd x) (snd y)
+ end x y)%list.
+
+ Inductive wff : list (sigT eP) -> forall {t}, @exprf var1 t -> @exprf var2 t -> Prop :=
+ | WfConst : forall t G n, @wff G t (Const n) (Const n)
+ | WfVar : forall G (t : base_type_code) x x', List.In (x == x') G -> @wff G t (Var x) (Var x')
+ | WfOp : forall G {t} {tR} (e : @exprf var1 t) (e' : @exprf var2 t) op,
+ wff G e e'
+ -> wff G (Op (tR := tR) op e) (Op (tR := tR) op e')
+ | WfLet : forall G t1 t2 e1 e1' (e2 : interp_flat_type_gen var1 t1 -> @exprf var1 t2) e2',
+ wff G e1 e1'
+ -> (forall x1 x2, wff (flatten_binding_list x1 x2 ++ G) (e2 x1) (e2' x2))
+ -> wff G (Let e1 e2) (Let e1' e2')
+ | WfPair : forall G {t1} {t2} (e1: @exprf var1 t1) (e2: @exprf var1 t2)
+ (e1': @exprf var2 t1) (e2': @exprf var2 t2),
+ wff G e1 e1'
+ -> wff G e2 e2'
+ -> wff G (Pair e1 e2) (Pair e1' e2').
+ Inductive wf : list (sigT eP) -> forall {t}, @expr var1 t -> @expr var2 t -> Prop :=
+ | WfReturn : forall t G e e', @wff G t e e' -> wf G (Return e) (Return e')
+ | WfAbs : forall A B G e e',
+ (forall x x', @wf ((x == x') :: G) B (e x) (e' x'))
+ -> @wf G (Arrow A B) (Abs e) (Abs e').
+ End wf.
+
+ Definition Wf {t} (E : @Expr t) := forall var1 var2, wf nil (E var1) (E var2).
+
+ Axiom Wf_admitted : forall {t} (E:Expr t), @Wf t E.
+ End expr_param.
+End language.
+Global Arguments Prod {_} _ _.
+Global Arguments Arrow {_} _ _.
+Global Arguments Tbase {_} _.
+Infix "*" := (@Prod _) : ctype_scope.
+Notation "A -> B" := (@Arrow _ A B) : ctype_scope.
+
+Ltac admit_Wf := apply Wf_admitted.
+
+Global Arguments Const {_ _ _ _ _} _.
+Global Arguments Var {_ _ _ _ _} _.
+Global Arguments SmartVar {_ _ _ _ _} _.
+Global Arguments SmartVarVar {_ _ _ _ _} _.
+Global Arguments SmartConst {_ _ _ _ _} _.
+Global Arguments Op {_ _ _ _ _ _} _ _.
+Global Arguments Let {_ _ _ _ _} _ {_} _.
+Global Arguments Pair {_ _ _ _ _} _ {_} _.
+Global Arguments Return {_ _ _ _ _} _.
+Global Arguments Abs {_ _ _ _ _ _} _.
+Global Arguments interp_flat_type_gen {_} _ _.
+Global Arguments interp_type {_} _ _.
+
+Notation "'slet' x := A 'in' b" := (Let A (fun x => b)) : expr_scope.
+Notation "'λ' x .. y , t" := (Abs (fun x => .. (Abs (fun y => t%expr)) ..)) : expr_scope.
+Notation "( x , y , .. , z )" := (Pair .. (Pair x%expr y%expr) .. z%expr) : expr_scope.
diff --git a/src/Reflection/TestCase.v b/src/Reflection/TestCase.v
new file mode 100644
index 000000000..7511bb750
--- /dev/null
+++ b/src/Reflection/TestCase.v
@@ -0,0 +1,119 @@
+Require Import Crypto.Reflection.Syntax.
+Require Export Crypto.Reflection.Reify.
+Require Import Crypto.Reflection.InputSyntax.
+Require Crypto.Reflection.Linearize.
+Require Import Crypto.Reflection.WfReflective.
+
+Import ReifyDebugNotations.
+
+Inductive base_type := Tnat.
+Definition interp_base_type (v : base_type) : Type :=
+ match v with
+ | Tnat => nat
+ end.
+Local Notation tnat := (Tbase Tnat).
+Inductive op : flat_type base_type -> flat_type base_type -> Type :=
+| Add : op (Prod tnat tnat) tnat
+| Mul : op (Prod tnat tnat) tnat.
+Definition interp_op src dst (f : op src dst) : interp_flat_type_gen interp_base_type src -> interp_flat_type_gen interp_base_type dst
+ := match f with
+ | Add => fun xy => fst xy + snd xy
+ | Mul => fun xy => fst xy * snd xy
+ end%nat.
+
+Global Instance: forall x y, reify_op op (x + y)%nat 2 Add := fun _ _ => I.
+Global Instance: forall x y, reify_op op (x * y)%nat 2 Mul := fun _ _ => I.
+Global Instance: reify type nat := Tnat.
+
+Ltac Reify' e := Reify.Reify' base_type interp_base_type op e.
+Ltac Reify e := Reify.Reify base_type interp_base_type op e.
+Ltac Reify_rhs := Reify.Reify_rhs base_type interp_base_type op interp_op.
+
+(*Ltac reify_debug_level ::= constr:(2).*)
+
+Goal (flat_type base_type -> Type) -> False.
+ intro var.
+ let x := reifyf base_type interp_base_type op var 1%nat in pose x.
+ let x := Reify' 1%nat in unify x (fun var => Const (interp_base_type:=interp_base_type) (var:=var) (t:=Tbase Tnat) (op:=op) 1).
+ let x := reifyf base_type interp_base_type op var (1 + 1)%nat in pose x.
+ let x := Reify' (1 + 1)%nat in unify x (fun var => Op Add (Pair (Const (interp_base_type:=interp_base_type) (var:=var) (t:=Tbase Tnat) (op:=op) 1) (Const (interp_base_type:=interp_base_type) (var:=var) (t:=Tbase Tnat) (op:=op) 1))).
+ let x := reify_abs base_type interp_base_type op var (fun x => x + 1)%nat in pose x.
+ let x := Reify' (fun x => x + 1)%nat in unify x (fun var => Abs (fun y => Op Add (Pair (Var y) (Const (interp_base_type:=interp_base_type) (var:=var) (t:=Tbase Tnat) (op:=op) 1)))).
+ let x := reifyf base_type interp_base_type op var (let '(a, b) := (1, 1) in a + b)%nat in pose x.
+ let x := reifyf base_type interp_base_type op var (let '(a, b, c) := (1, 1, 1) in a + b + c)%nat in pose x.
+ let x := Reify' (fun x => let '(a, b) := (1, 1) in a + x)%nat in let x := (eval vm_compute in x) in pose x.
+ let x := Reify' (fun x => let '(a, b) := (1, 1) in a + x)%nat in
+ unify x (fun var => Abs (fun x' =>
+ let c1 := (Const (interp_base_type:=interp_base_type) (var:=var) (t:=Tbase Tnat) (op:=op) 1) in
+ MatchPair (tC:=tnat) (Pair c1 c1)
+ (fun x0 _ : var tnat => Op Add (Pair (Var x0) (Var x'))))).
+ let x := reifyf base_type interp_base_type op var (let x := 5 in let y := 6 in (let a := 1 in let '(c, d) := (2, 3) in a + x + c + d) + y)%nat in pose x.
+ let x := Reify' (fun x y => (let a := 1 in let '(c, d) := (2, 3) in a + x + c + d) + y)%nat in pose x.
+Abort.
+
+
+Goal (0 = let x := 1+2 in x*3)%nat.
+ Reify_rhs.
+Abort.
+
+Goal (0 = let x := 1 in let y := 2 in x * y)%nat.
+ Reify_rhs.
+Abort.
+
+Import Linearize.
+
+Goal True.
+ let x := Reify (fun x y => (let a := 1 in let '(c, d) := (2, 3) in a + x + c + d) + y)%nat in
+ pose (InlineConst (Linearize x)) as e.
+ vm_compute in e.
+Abort.
+
+Definition example_expr : Syntax.Expr base_type interp_base_type op (Tbase Tnat).
+Proof.
+ let x := Reify (let x := 1 in let y := 1 in (let a := 1 in let '(c, d) := (2, 3) in a + x + c + d) + y)%nat in
+ exact x.
+Defined.
+
+Definition base_type_eq_semidec_transparent : forall t1 t2, option (t1 = t2)
+ := fun t1 t2 => match t1, t2 with
+ | Tnat, Tnat => Some eq_refl
+ end.
+Lemma base_type_eq_semidec_is_dec : forall t1 t2,
+ base_type_eq_semidec_transparent t1 t2 = None -> t1 <> t2.
+Proof.
+ intros t1 t2; destruct t1, t2; simpl; intros; congruence.
+Qed.
+Definition op_beq t1 tR : op t1 tR -> op t1 tR -> option pointed_Prop
+ := fun x y => match x, y with
+ | Add, Add => Some trivial
+ | Add, _ => None
+ | Mul, Mul => Some trivial
+ | Mul, _ => None
+ end.
+Lemma op_beq_bl t1 tR (x y : op t1 tR)
+ : match op_beq t1 tR x y with
+ | Some p => to_prop p
+ | None => False
+ end -> x = y.
+Proof.
+ destruct x; simpl.
+ { refine match y with Add => _ | _ => _ end; tauto. }
+ { refine match y with Add => _ | _ => _ end; tauto. }
+Qed.
+
+Ltac reflect_Wf := WfReflective.reflect_Wf base_type_eq_semidec_is_dec op_beq_bl.
+
+Lemma example_expr_wf_slow : Wf _ _ _ example_expr.
+Proof.
+ Time (vm_compute; intros;
+ repeat match goal with
+ | [ |- wf _ _ _ _ _ _ ] => constructor; intros
+ | [ |- wff _ _ _ _ _ _ ] => constructor; intros
+ | [ |- List.In _ _ ] => vm_compute
+ | [ |- ?x = ?x \/ _ ] => left; reflexivity
+ | [ |- ?x = ?y \/ _ ] => right
+ end). (* 0.036 s *)
+Qed.
+
+Lemma example_expr_wf : Wf _ _ _ example_expr.
+Proof. Time reflect_Wf. (* 0.008 s *) Qed.
diff --git a/src/Reflection/WfReflective.v b/src/Reflection/WfReflective.v
new file mode 100644
index 000000000..34a139643
--- /dev/null
+++ b/src/Reflection/WfReflective.v
@@ -0,0 +1,507 @@
+(** * A reflective Version of [Wf] proofs *)
+(** Because every constructor of [Syntax.wff] stores the syntax tree
+ being proven well-formed, a proof that a syntax tree is
+ well-formed is quadratic in the size of the syntax tree. (Tacking
+ an extra term on to the head of the syntax tree requires an extra
+ constructor of [Syntax.wff], and that constructor stores the
+ entirety of the new syntax tree.)
+
+ In practice, this makes proving well-formedness of large trees
+ very slow. To remedy this, we provide an alternative type
+ ([reflect_wffT]) that implies [Syntax.wff], but is only linear in
+ the size of the syntax tree, with a coefficient less than 1.
+
+ The idea is that, since we already know the syntax-tree arguments
+ to the constructors (and, moreover, already fully know the shape
+ of the [Syntax.wff] proof, because it will exactly match the shape
+ of the syntax tree), the proof doesn't have to store any of that
+ information. It only has to store the genuinely new information
+ in [Syntax.wff], namely, that the constants don't depend on the
+ [var] argument (i.e., that the constants in the same location in
+ the two expressions are equal), and that there are no free nor
+ mismatched variables (i.e., that the variables in the same
+ location in the two expressions are in the relevant list of
+ binders). We can make the further optimization of storing the
+ location in the list of each binder, so that all that's left to
+ verify is that the locations line up correctly.
+
+ Since there is no way to assign list locations (De Bruijn indices)
+ after the fact (that is, once we have an [exprf var t] rather than
+ an [Expr t]), we instead start from an expression where [var] is
+ enriched with De Bruijn indices, and talk about [Syntax.wff] of
+ that expression stripped of its De Bruijn indices. Since this
+ procedure is only expected to work on concrete syntax trees, we
+ will be able to simply check by unification to check that
+ stripping the indices results in the term that we started with.
+
+ The interface of this file is that, to prove a [Syntax.Wf] goal,
+ you invoke the tactic [reflect_Wf base_type_eq_semidec_is_dec
+ op_beq_bl], where:
+
+ - [base_type_eq_semidec_is_dec : forall t1 t2,
+ base_type_eq_semidec_transparent t1 t2 = None -> t1 <> t2] for
+ some [base_type_eq_semidec_transparent : forall t1 t2 :
+ base_type_code, option (t1 = t2)], and
+
+ - [op_beq_bl : forall t1 tR x y, prop_of_option (op_beq t1 tR x y)
+ -> x = y] for some [op_beq : forall t1 tR, op t1 tR -> op t1 tR
+ -> option pointed_Prop] *)
+
+Require Import Coq.Arith.Arith Coq.Logic.Eqdep_dec.
+Require Import Crypto.Reflection.Syntax.
+Require Import Crypto.Util.Notations Crypto.Util.Tactics Crypto.Util.Option Crypto.Util.Sigma Crypto.Util.Prod Crypto.Util.Decidable Crypto.Util.ListUtil.
+Require Export Crypto.Util.PointedProp. (* export for the [bool >-> option pointed_Prop] coercion *)
+Require Export Crypto.Util.FixCoqMistakes.
+
+
+Section language.
+ (** To be able to optimize away so much of the [Syntax.wff] proof,
+ we must be able to decide a few things: equality of base types,
+ and equality of operator codes. Since we will be casting across
+ the equality proofs of base types, we require that this
+ semi-decider give transparent proofs. (This requirement is not
+ enforced, but it will block [vm_compute] when trying to use the
+ lemma in this file.) *)
+ Context (base_type_code : Type).
+ Context (interp_base_type : base_type_code -> Type).
+ Context (base_type_eq_semidec_transparent : forall t1 t2 : base_type_code, option (t1 = t2)).
+ Context (base_type_eq_semidec_is_dec : forall t1 t2, base_type_eq_semidec_transparent t1 t2 = None -> t1 <> t2).
+ Context (op : flat_type base_type_code -> flat_type base_type_code -> Type).
+ (** In practice, semi-deciding equality of operators should either
+ return [Some trivial] or [None], and not make use of the
+ generality of [pointed_Prop]. However, we need to use
+ [pointed_Prop] internally because we need to talk about equality
+ of things of type [var t], for [var : base_type_code -> Type].
+ It does not hurt to allow extra generality in [op_beq]. *)
+ Context (op_beq : forall t1 tR, op t1 tR -> op t1 tR -> option pointed_Prop).
+ Context (op_beq_bl : forall t1 tR x y, prop_of_option (op_beq t1 tR x y) -> x = y).
+ Context {var1 var2 : base_type_code -> Type}.
+
+ Local Notation eP := (fun t => var1 (fst t) * var2 (snd t))%type (only parsing).
+
+ (* convenience notations that fill in some arguments used across the section *)
+ Local Notation flat_type := (flat_type base_type_code).
+ Local Notation type := (type base_type_code).
+ Let Tbase := @Tbase base_type_code.
+ Local Coercion Tbase : base_type_code >-> Syntax.flat_type.
+ Local Notation interp_type := (interp_type interp_base_type).
+ Local Notation interp_flat_type := (interp_flat_type_gen interp_base_type).
+ Local Notation exprf := (@exprf base_type_code interp_base_type op).
+ Local Notation expr := (@expr base_type_code interp_base_type op).
+
+ Local Ltac inversion_base_type_code_step :=
+ match goal with
+ | [ H : ?x = ?x :> base_type_code |- _ ]
+ => assert (H = eq_refl) by eapply UIP_dec, dec_rel_of_semidec_rel, base_type_eq_semidec_is_dec; subst H
+ | [ H : ?x = ?y :> base_type_code |- _ ] => subst x || subst y
+ end.
+ Local Ltac inversion_base_type_code := repeat inversion_base_type_code_step.
+
+ (* lift [base_type_eq_semidec_transparent] across [flat_type] *)
+ Fixpoint flat_type_eq_semidec_transparent (t1 t2 : flat_type) : option (t1 = t2)
+ := match t1, t2 return option (t1 = t2) with
+ | Syntax.Tbase t1, Syntax.Tbase t2
+ => option_map (@f_equal _ _ Tbase _ _)
+ (base_type_eq_semidec_transparent t1 t2)
+ | Syntax.Tbase _, _ => None
+ | Prod A B, Prod A' B'
+ => match flat_type_eq_semidec_transparent A A', flat_type_eq_semidec_transparent B B' with
+ | Some p, Some q => Some (f_equal2 Prod p q)
+ | _, _ => None
+ end
+ | Prod _ _, _ => None
+ end.
+ Fixpoint type_eq_semidec_transparent (t1 t2 : type) : option (t1 = t2)
+ := match t1, t2 return option (t1 = t2) with
+ | Syntax.Tflat t1, Syntax.Tflat t2
+ => option_map (@f_equal _ _ (@Tflat _) _ _)
+ (flat_type_eq_semidec_transparent t1 t2)
+ | Syntax.Tflat _, _ => None
+ | Arrow A B, Arrow A' B'
+ => match base_type_eq_semidec_transparent A A', type_eq_semidec_transparent B B' with
+ | Some p, Some q => Some (f_equal2 (@Arrow base_type_code) p q)
+ | _, _ => None
+ end
+ | Arrow _ _, _ => None
+ end.
+ Lemma base_type_eq_semidec_transparent_refl t : base_type_eq_semidec_transparent t t = Some eq_refl.
+ Proof.
+ clear -base_type_eq_semidec_is_dec.
+ pose proof (base_type_eq_semidec_is_dec t t).
+ destruct (base_type_eq_semidec_transparent t t); intros; try intuition congruence.
+ inversion_base_type_code; reflexivity.
+ Qed.
+ Lemma flat_type_eq_semidec_transparent_refl t : flat_type_eq_semidec_transparent t t = Some eq_refl.
+ Proof.
+ clear -base_type_eq_semidec_is_dec.
+ induction t as [t | A B IHt]; simpl.
+ { rewrite base_type_eq_semidec_transparent_refl; reflexivity. }
+ { rewrite_hyp !*; reflexivity. }
+ Qed.
+ Lemma type_eq_semidec_transparent_refl t : type_eq_semidec_transparent t t = Some eq_refl.
+ Proof.
+ clear -base_type_eq_semidec_is_dec.
+ induction t as [t | A B IHt]; simpl.
+ { rewrite flat_type_eq_semidec_transparent_refl; reflexivity. }
+ { rewrite base_type_eq_semidec_transparent_refl; rewrite_hyp !*; reflexivity. }
+ Qed.
+
+ Definition op_beq' t1 tR t1' tR' (x : op t1 tR) (y : op t1' tR') : option pointed_Prop
+ := match flat_type_eq_semidec_transparent t1 t1', flat_type_eq_semidec_transparent tR tR' with
+ | Some p, Some q
+ => match p in (_ = t1'), q in (_ = tR') return op t1' tR' -> _ with
+ | eq_refl, eq_refl => fun y => op_beq _ _ x y
+ end y
+ | _, _ => None
+ end.
+
+ (** While [Syntax.wff] is parameterized over a list of [sigT (fun t
+ => var1 t * var2 t)], it is simpler here to make everything
+ heterogenous, rather than trying to mix homogenous and
+ heterogenous things.† Thus we parameterize our [reflect_wffT]
+ over a list of [sigT (fun t => var1 (fst t) * var2 (snd t))],
+ and write a function ([duplicate_type]) that turns the former
+ into the latter.
+
+ † This is an instance of the general theme that abstraction
+ barriers are important. Here we enforce the abstraction
+ barrier that our input decision procedures are homogenous, but
+ all of our internal code is strictly heterogenous. This
+ allows us to contain the conversions between homogenous and
+ heterogenous code to a few functions: [op_beq'],
+ [eq_type_and_var], [eq_type_and_const], and to the statement
+ about [Syntax.wff] itself. *)
+
+ Definition eq_semidec_and_gen {T} (semidec : forall x y : T, option (x = y))
+ (t t' : T) (f : T -> Type) (x : f t) (x' : f t')
+ : option pointed_Prop
+ := match semidec t t' with
+ | Some p
+ => Some (inject (eq_rect _ f x _ p = x'))
+ | None => None
+ end.
+
+ (* Here is where we use the generality of [pointed_Prop], to say
+ that two things of type [var1] are equal, and two things of type
+ [var2] are equal. *)
+ Definition eq_type_and_var : sigT eP -> sigT eP -> option pointed_Prop
+ := fun x y => (eq_semidec_and_gen
+ base_type_eq_semidec_transparent _ _ var1 (fst (projT2 x)) (fst (projT2 y))
+ /\ eq_semidec_and_gen
+ base_type_eq_semidec_transparent _ _ var2 (snd (projT2 x)) (snd (projT2 y)))%option_pointed_prop.
+ Definition eq_type_and_const (t t' : flat_type) (x : interp_flat_type t) (y : interp_flat_type t')
+ : option pointed_Prop
+ := eq_semidec_and_gen
+ flat_type_eq_semidec_transparent _ _ interp_flat_type x y.
+
+ Definition duplicate_type (ls : list (sigT (fun t => var1 t * var2 t)%type)) : list (sigT eP)
+ := List.map (fun v => existT eP (projT1 v, projT1 v) (projT2 v)) ls.
+
+ Lemma duplicate_type_app ls ls'
+ : (duplicate_type (ls ++ ls') = duplicate_type ls ++ duplicate_type ls')%list.
+ Proof. apply List.map_app. Qed.
+ Lemma duplicate_type_length ls
+ : List.length (duplicate_type ls) = List.length ls.
+ Proof. apply List.map_length. Qed.
+ Lemma duplicae_type_in t v ls
+ : List.In (existT _ (t, t) v) (duplicate_type ls) -> List.In (existT _ t v) ls.
+ Proof.
+ unfold duplicate_type; rewrite List.in_map_iff.
+ intros [ [? ?] [? ?] ].
+ inversion_sigma; inversion_prod; inversion_base_type_code; subst; simpl.
+ assumption.
+ Qed.
+ Lemma duplicate_type_not_in G t t0 v (H : base_type_eq_semidec_transparent t t0 = None)
+ : ~List.In (existT _ (t, t0) v) (duplicate_type G).
+ Proof.
+ apply base_type_eq_semidec_is_dec in H.
+ clear -H; intro H'.
+ induction G as [|? ? IHG]; simpl in *; destruct H';
+ intuition; congruence.
+ Qed.
+
+ Definition preflatten_binding_list2 t1 t2 : option (forall (x : interp_flat_type_gen var1 t1) (y : interp_flat_type_gen var2 t2), list (sigT (fun t => var1 t * var2 t)%type))
+ := match flat_type_eq_semidec_transparent t1 t2 with
+ | Some p
+ => Some (fun x y
+ => let x := eq_rect _ (interp_flat_type_gen var1) x _ p in
+ flatten_binding_list base_type_code x y)
+ | None => None
+ end.
+ Definition flatten_binding_list2 t1 t2 : option (forall (x : interp_flat_type_gen var1 t1) (y : interp_flat_type_gen var2 t2), list (sigT eP))
+ := option_map (fun f x y => duplicate_type (f x y)) (preflatten_binding_list2 t1 t2).
+ (** This function adds De Bruijn indices to variables *)
+ Fixpoint natize_interp_flat_type_gen var t (base : nat) (v : interp_flat_type_gen var t) {struct t}
+ : nat * interp_flat_type_gen (fun t : base_type_code => nat * var t)%type t
+ := match t return interp_flat_type_gen var t -> nat * interp_flat_type_gen _ t with
+ | Prod A B => fun v => let ret := @natize_interp_flat_type_gen _ B base (snd v) in
+ let base := fst ret in
+ let b := snd ret in
+ let ret := @natize_interp_flat_type_gen _ A base (fst v) in
+ let base := fst ret in
+ let a := snd ret in
+ (base, (a, b))
+ | Syntax.Tbase t => fun v => (S base, (base, v))
+ end v.
+ Arguments natize_interp_flat_type_gen {var t} _ _.
+ Lemma length_natize_interp_flat_type_gen1 {t} (base : nat) (v1 : interp_flat_type_gen var1 t) (v2 : interp_flat_type_gen var2 t)
+ : fst (natize_interp_flat_type_gen base v1) = length (flatten_binding_list base_type_code v1 v2) + base.
+ Proof.
+ revert base; induction t; simpl; [ reflexivity | ].
+ intros; rewrite List.app_length, <- plus_assoc.
+ rewrite_hyp <- ?*; reflexivity.
+ Qed.
+ Lemma length_natize_interp_flat_type_gen2 {t} (base : nat) (v1 : interp_flat_type_gen var1 t) (v2 : interp_flat_type_gen var2 t)
+ : fst (natize_interp_flat_type_gen base v2) = length (flatten_binding_list base_type_code v1 v2) + base.
+ Proof.
+ revert base; induction t; simpl; [ reflexivity | ].
+ intros; rewrite List.app_length, <- plus_assoc.
+ rewrite_hyp <- ?*; reflexivity.
+ Qed.
+
+ (* This function strips De Bruijn indices from expressions *)
+ Fixpoint unnatize_exprf {var t} (base : nat) (e : @exprf (fun t => nat * var t)%type t) : @exprf var t
+ := match e in @Syntax.exprf _ _ _ _ t return exprf t with
+ | Const _ x => Const x
+ | Var _ x => Var (snd x)
+ | Op _ _ op args => Op op (@unnatize_exprf _ _ base args)
+ | Let _ ex _ eC => Let (@unnatize_exprf _ _ base ex)
+ (fun x => let v := natize_interp_flat_type_gen base x in
+ @unnatize_exprf _ _ (fst v) (eC (snd v)))
+ | Pair _ x _ y => Pair (@unnatize_exprf _ _ base x) (@unnatize_exprf _ _ base y)
+ end.
+ Fixpoint unnatize_expr {var t} (base : nat) (e : @expr (fun t => nat * var t)%type t) : @expr var t
+ := match e in @Syntax.expr _ _ _ _ t return expr t with
+ | Return _ x => unnatize_exprf base x
+ | Abs tx tR f => Abs (fun x : var tx => let v := natize_interp_flat_type_gen (t:=tx) base x in
+ @unnatize_expr _ _ (fst v) (f (snd v)))
+ end.
+
+ Fixpoint reflect_wffT (G : list (sigT (fun t => var1 (fst t) * var2 (snd t))%type))
+ {t1 t2 : flat_type}
+ (e1 : @exprf (fun t => nat * var1 t)%type t1) (e2 : @exprf (fun t => nat * var2 t)%type t2)
+ {struct e1}
+ : option pointed_Prop
+ := match e1, e2 return option _ with
+ | Const t0 x, Const t1 y
+ => match flat_type_eq_semidec_transparent t0 t1 with
+ | Some p => Some (inject (eq_rect _ interp_flat_type x _ p = y))
+ | None => None
+ end
+ | Const _ _, _ => None
+ | Var t0 x, Var t1 y
+ => match beq_nat (fst x) (fst y), List.nth_error G (List.length G - S (fst x)) with
+ | true, Some v => eq_type_and_var v (existT _ (t0, t1) (snd x, snd y))
+ | _, _ => None
+ end
+ | Var _ _, _ => None
+ | Op t1 tR op args, Op t1' tR' op' args'
+ => match @reflect_wffT G t1 t1' args args', op_beq' t1 tR t1' tR' op op' with
+ | Some p, Some q => Some (p /\ q)%pointed_prop
+ | _, _ => None
+ end
+ | Op _ _ _ _, _ => None
+ | Let tx ex tC eC, Let tx' ex' tC' eC'
+ => match @reflect_wffT G tx tx' ex ex', @flatten_binding_list2 tx tx', flat_type_eq_semidec_transparent tC tC' with
+ | Some p, Some G0, Some _
+ => Some (p /\ inject (forall (x : interp_flat_type_gen var1 tx) (x' : interp_flat_type_gen var2 tx'),
+ match @reflect_wffT (G0 x x' ++ G)%list _ _
+ (eC (snd (natize_interp_flat_type_gen (List.length G) x)))
+ (eC' (snd (natize_interp_flat_type_gen (List.length G) x'))) with
+ | Some p => to_prop p
+ | None => False
+ end))
+ | _, _, _ => None
+ end
+ | Let _ _ _ _, _ => None
+ | Pair tx ex ty ey, Pair tx' ex' ty' ey'
+ => match @reflect_wffT G tx tx' ex ex', @reflect_wffT G ty ty' ey ey' with
+ | Some p, Some q => Some (p /\ q)
+ | _, _ => None
+ end
+ | Pair _ _ _ _, _ => None
+ end%pointed_prop.
+
+ Fixpoint reflect_wfT (G : list (sigT (fun t => var1 (fst t) * var2 (snd t))%type))
+ {t1 t2 : type}
+ (e1 : @expr (fun t => nat * var1 t)%type t1) (e2 : @expr (fun t => nat * var2 t)%type t2)
+ {struct e1}
+ : option pointed_Prop
+ := match e1, e2 return option _ with
+ | Return _ x, Return _ y
+ => reflect_wffT G x y
+ | Return _ _, _ => None
+ | Abs tx tR f, Abs tx' tR' f'
+ => match @flatten_binding_list2 tx tx', type_eq_semidec_transparent tR tR' with
+ | Some G0, Some _
+ => Some (inject (forall (x : interp_flat_type_gen var1 tx) (x' : interp_flat_type_gen var2 tx'),
+ match @reflect_wfT (G0 x x' ++ G)%list _ _
+ (f (snd (natize_interp_flat_type_gen (List.length G) x)))
+ (f' (snd (natize_interp_flat_type_gen (List.length G) x'))) with
+ | Some p => to_prop p
+ | None => False
+ end))
+ | _, _ => None
+ end
+ | Abs _ _ _, _ => None
+ end%pointed_prop.
+
+ Local Ltac handle_op_beq_correct :=
+ repeat match goal with
+ | [ H : op_beq ?t1 ?tR ?x ?y = _ |- _ ]
+ => let H' := fresh in
+ pose proof (op_beq_bl t1 tR x y) as H'; rewrite H in H'; clear H
+ end.
+ Local Ltac t_step :=
+ match goal with
+ | _ => progress unfold eq_type_and_var, op_beq', flatten_binding_list2, preflatten_binding_list2, option_map, and_option_pointed_Prop, eq_semidec_and_gen in *
+ | _ => progress simpl in *
+ | _ => progress break_match
+ | _ => progress subst
+ | _ => progress inversion_option
+ | _ => progress inversion_pointed_Prop
+ | _ => congruence
+ | _ => tauto
+ | _ => progress intros
+ | _ => progress handle_op_beq_correct
+ | _ => progress specialize_by tauto
+ | [ v : sigT _ |- _ ] => destruct v
+ | [ v : prod _ _ |- _ ] => destruct v
+ | [ H : forall x x', _ |- wff _ _ _ (flatten_binding_list _ ?x1 ?x2 ++ _)%list _ _ ]
+ => specialize (H x1 x2)
+ | [ H : forall x x', _ |- wf _ _ _ (existT _ _ (?x1, ?x2) :: _)%list _ _ ]
+ => specialize (H x1 x2)
+ | [ H : and _ _ |- _ ] => destruct H
+ | [ H : context[duplicate_type (_ ++ _)%list] |- _ ]
+ => rewrite duplicate_type_app in H
+ | [ H : context[List.length (duplicate_type _)] |- _ ]
+ => rewrite duplicate_type_length in H
+ | [ H : context[List.length (_ ++ _)%list] |- _ ]
+ => rewrite List.app_length in H
+ | [ |- wff _ _ _ _ (unnatize_exprf (fst _) _) (unnatize_exprf (fst _) _) ]
+ => erewrite length_natize_interp_flat_type_gen1, length_natize_interp_flat_type_gen2; eassumption
+ | [ |- wf _ _ _ _ (unnatize_exprf (fst _) _) (unnatize_exprf (fst _) _) ]
+ => erewrite length_natize_interp_flat_type_gen1, length_natize_interp_flat_type_gen2; eassumption
+ | [ |- @wf _ _ _ _ _ _ (Syntax.Tflat _ _) _ _ ] => constructor
+ | [ |- @wf _ _ _ _ _ _ _ (Syntax.Abs _) (Syntax.Abs _) ] => constructor
+ | [ H : base_type_eq_semidec_transparent _ _ = None |- False ] => eapply duplicate_type_not_in; eassumption
+ | [ H : List.nth_error _ _ = Some _ |- _ ] => apply List.nth_error_In in H
+ | [ H : List.In _ (duplicate_type _) |- _ ] => apply duplicae_type_in in H
+ | [ H : context[match _ with _ => _ end] |- _ ] => revert H; progress break_match
+ | [ |- wff _ _ _ _ _ _ ] => constructor
+ | _ => progress unfold and_pointed_Prop in *
+ end.
+ Local Ltac t := repeat t_step.
+ Fixpoint reflect_wff (G : list (sigT (fun t => var1 t * var2 t)%type))
+ {t1 t2 : flat_type}
+ (e1 : @exprf (fun t => nat * var1 t)%type t1) (e2 : @exprf (fun t => nat * var2 t)%type t2)
+ {struct e1}
+ : match reflect_wffT (duplicate_type G) e1 e2, flat_type_eq_semidec_transparent t1 t2 with
+ | Some reflective_obligation, Some p
+ => to_prop reflective_obligation
+ -> @wff base_type_code interp_base_type op var1 var2 G t2 (eq_rect _ exprf (unnatize_exprf (List.length G) e1) _ p) (unnatize_exprf (List.length G) e2)
+ | _, _ => True
+ end.
+ Proof.
+ destruct e1 as [ | | ? ? ? args | tx ex tC eC | ? ex ? ey ],
+ e2 as [ | | ? ? ? args' | tx' ex' tC' eC' | ? ex' ? ey' ]; simpl; try solve [ exact I ];
+ [ clear reflect_wff
+ | clear reflect_wff
+ | specialize (reflect_wff G _ _ args args')
+ | pose proof (reflect_wff G _ _ ex ex');
+ pose proof (fun x x'
+ => match preflatten_binding_list2 tx tx' as v return match v with Some _ => _ | None => True end with
+ | Some G0
+ => reflect_wff
+ (G0 x x' ++ G)%list _ _
+ (eC (snd (natize_interp_flat_type_gen (length (duplicate_type G)) x)))
+ (eC' (snd (natize_interp_flat_type_gen (length (duplicate_type G)) x')))
+ | None => I
+ end);
+ clear reflect_wff
+ | pose proof (reflect_wff G _ _ ex ex'); pose proof (reflect_wff G _ _ ey ey'); clear reflect_wff ].
+ { t. }
+ { t. }
+ { t. }
+ { t. }
+ { t. }
+ Qed.
+ Fixpoint reflect_wf (G : list (sigT (fun t => var1 t * var2 t)%type))
+ {t1 t2 : type}
+ (e1 : @expr (fun t => nat * var1 t)%type t1) (e2 : @expr (fun t => nat * var2 t)%type t2)
+ : match reflect_wfT (duplicate_type G) e1 e2, type_eq_semidec_transparent t1 t2 with
+ | Some reflective_obligation, Some p
+ => to_prop reflective_obligation
+ -> @wf base_type_code interp_base_type op var1 var2 G t2 (eq_rect _ expr (unnatize_expr (List.length G) e1) _ p) (unnatize_expr (List.length G) e2)
+ | _, _ => True
+ end.
+ Proof.
+ destruct e1 as [ t1 e1 | tx tR f ],
+ e2 as [ t2 e2 | tx' tR' f' ]; simpl; try solve [ exact I ];
+ [ clear reflect_wf;
+ pose proof (@reflect_wff G t1 t2 e1 e2)
+ | pose proof (fun x x'
+ => match preflatten_binding_list2 tx tx' as v return match v with Some _ => _ | None => True end with
+ | Some G0
+ => reflect_wf
+ (G0 x x' ++ G)%list _ _
+ (f (snd (natize_interp_flat_type_gen (length (duplicate_type G)) x)))
+ (f' (snd (natize_interp_flat_type_gen (length (duplicate_type G)) x')))
+ | None => I
+ end);
+ clear reflect_wf ].
+ { t. }
+ { t. }
+ Qed.
+End language.
+
+Section Wf.
+ Context (base_type_code : Type)
+ (interp_base_type : base_type_code -> Type)
+ (base_type_eq_semidec_transparent : forall t1 t2 : base_type_code, option (t1 = t2))
+ (base_type_eq_semidec_is_dec : forall t1 t2, base_type_eq_semidec_transparent t1 t2 = None -> t1 <> t2)
+ (op : flat_type base_type_code -> flat_type base_type_code -> Type)
+ (op_beq : forall t1 tR, op t1 tR -> op t1 tR -> option pointed_Prop)
+ (op_beq_bl : forall t1 tR x y, prop_of_option (op_beq t1 tR x y) -> x = y)
+ {t : type base_type_code}
+ (e : @Expr base_type_code interp_base_type op t).
+
+ (** Leads to smaller proofs, but is less generally applicable *)
+ Theorem reflect_Wf_unnatize
+ : (forall var1 var2,
+ prop_of_option (@reflect_wfT base_type_code interp_base_type base_type_eq_semidec_transparent op op_beq var1 var2 nil t t (e _) (e _)))
+ -> Wf _ _ _ (fun var => unnatize_expr base_type_code interp_base_type op 0 (e (fun t => (nat * var t)%type))).
+ Proof.
+ intros H var1 var2; specialize (H var1 var2).
+ pose proof (@reflect_wf base_type_code interp_base_type base_type_eq_semidec_transparent base_type_eq_semidec_is_dec op op_beq op_beq_bl var1 var2 nil t t (e _) (e _)) as H'.
+ rewrite type_eq_semidec_transparent_refl in H' by assumption; simpl in *.
+ edestruct reflect_wfT; simpl in *; tauto.
+ Qed.
+
+ (** Leads to larger proofs (an extra constant factor which is the
+ size of the expression tree), but more generally applicable *)
+ Theorem reflect_Wf
+ : (forall var1 var2,
+ unnatize_expr base_type_code interp_base_type op 0 (e (fun t => (nat * var1 t)%type)) = e _
+ /\ prop_of_option (@reflect_wfT base_type_code interp_base_type base_type_eq_semidec_transparent op op_beq var1 var2 nil t t (e _) (e _)))
+ -> Wf _ _ _ e.
+ Proof.
+ intros H var1 var2.
+ rewrite <- (proj1 (H var1 var2)), <- (proj1 (H var2 var2)).
+ apply reflect_Wf_unnatize, H.
+ Qed.
+End Wf.
+
+
+Ltac generalize_reflect_Wf base_type_eq_semidec_is_dec op_beq_bl :=
+ lazymatch goal with
+ | [ |- @Wf ?base_type_code ?interp_base_type ?op ?t ?e ]
+ => generalize (@reflect_Wf_unnatize base_type_code interp_base_type _ base_type_eq_semidec_is_dec op _ op_beq_bl t e)
+ end.
+Ltac use_reflect_Wf := vm_compute; let H := fresh in intro H; apply H; clear H.
+Ltac fin_reflect_Wf := repeat constructor.
+(** The tactic [reflect_Wf] is the main tactic of this file, used to
+ prove [Syntax.Wf] goals *)
+Ltac reflect_Wf base_type_eq_semidec_is_dec op_beq_bl :=
+ generalize_reflect_Wf base_type_eq_semidec_is_dec op_beq_bl;
+ use_reflect_Wf; fin_reflect_Wf.