aboutsummaryrefslogtreecommitdiff
path: root/src/Encoding
diff options
context:
space:
mode:
authorGravatar jadep <jade.philipoom@gmail.com>2016-04-25 19:07:38 -0400
committerGravatar jadep <jade.philipoom@gmail.com>2016-04-25 19:07:38 -0400
commit6c3c953d836ac43a8acff1975d73eb3204902ef2 (patch)
tree568f815a4ef0715c8bf0cc91e0e318a2151137ec /src/Encoding
parentb9c8f539cf3e9f9fdcd6861ef9691fe079bcd321 (diff)
Reorganization and revision of Encoding code and redefinition of sign_bit function.
Diffstat (limited to 'src/Encoding')
-rw-r--r--src/Encoding/ModularWordEncodingPre.v53
-rw-r--r--src/Encoding/PointEncodingPre.v352
-rw-r--r--src/Encoding/PointEncodingTheorems.v189
3 files changed, 594 insertions, 0 deletions
diff --git a/src/Encoding/ModularWordEncodingPre.v b/src/Encoding/ModularWordEncodingPre.v
new file mode 100644
index 000000000..272748103
--- /dev/null
+++ b/src/Encoding/ModularWordEncodingPre.v
@@ -0,0 +1,53 @@
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.Numbers.Natural.Peano.NPeano.
+Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
+Require Import Bedrock.Word.
+Require Import Crypto.Tactics.VerdiTactics.
+Require Import Crypto.Util.NatUtil.
+Require Import Crypto.Util.WordUtil.
+Require Import Crypto.Spec.Encoding.
+
+Local Open Scope nat_scope.
+
+Section ModularWordEncodingPre.
+ Context {m : Z} {sz : nat} {m_pos : (0 < m)%Z} {bound_check : Z.to_nat m < 2 ^ sz}.
+
+ Let Fm_enc (x : F m) : word sz := NToWord sz (Z.to_N (FieldToZ x)).
+
+ Let Fm_dec (x_ : word sz) : option (F m) :=
+ let z := Z.of_N (wordToN (x_)) in
+ if Z_lt_dec z m
+ then Some (ZToField z)
+ else None
+ .
+
+ (* TODO : move to ZUtil *)
+ Lemma bound_check_N : forall x : F m, (Z.to_N x < Npow2 sz)%N.
+ Proof.
+ intro.
+ pose proof (FieldToZ_range x m_pos) as x_range.
+ rewrite <- Nnat.N2Nat.id.
+ rewrite Npow2_nat.
+ replace (Z.to_N x) with (N.of_nat (Z.to_nat x)) by apply Z_nat_N.
+ apply (Nat2N_inj_lt _ (pow2 sz)).
+ rewrite Zpow_pow2.
+ destruct x_range as [x_low x_high].
+ apply Z2Nat.inj_lt in x_high; try omega.
+ rewrite <- ZUtil.pow_Z2N_Zpow by omega.
+ replace (Z.to_nat 2) with 2%nat by auto.
+ omega.
+ Qed.
+
+ Lemma Fm_encoding_valid : forall x, Fm_dec (Fm_enc x) = Some x.
+ Proof.
+ unfold Fm_dec, Fm_enc; intros.
+ pose proof (FieldToZ_range x m_pos).
+ rewrite wordToN_nat, NToWord_nat.
+ rewrite wordToNat_natToWord_idempotent by
+ (rewrite Nnat.N2Nat.id; apply bound_check_N).
+ rewrite Nnat.N2Nat.id, Z2N.id by omega.
+ rewrite ZToField_idempotent.
+ break_if; auto; omega.
+ Qed.
+
+End ModularWordEncodingPre.
diff --git a/src/Encoding/PointEncodingPre.v b/src/Encoding/PointEncodingPre.v
new file mode 100644
index 000000000..9eb5118bd
--- /dev/null
+++ b/src/Encoding/PointEncodingPre.v
@@ -0,0 +1,352 @@
+Require Import Coq.ZArith.ZArith Coq.ZArith.Znumtheory.
+Require Import Coq.Numbers.Natural.Peano.NPeano.
+Require Import Coq.Program.Equality.
+Require Import Crypto.Encoding.EncodingTheorems.
+Require Import Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.
+Require Import Crypto.ModularArithmetic.PrimeFieldTheorems.
+Require Import Bedrock.Word.
+Require Import Crypto.Tactics.VerdiTactics.
+
+Require Import Crypto.Spec.Encoding Crypto.Spec.ModularArithmetic.
+
+Local Open Scope F_scope.
+
+Section PointEncoding.
+ Context {prm: TwistedEdwardsParams} {sz : nat} {sz_nonzero : (0 < sz)%nat}
+ {FqEncoding : encoding of F q as word sz} {q_5mod8 : (q mod 8 = 5)%Z}
+ {sqrt_minus1_valid : (@ZToField q 2 ^ Z.to_N (q / 4)) ^ 2 = opp 1}.
+ Existing Instance prime_q.
+
+ Add Field Ffield : (@Ffield_theory q _)
+ (morphism (@Fring_morph q),
+ preprocess [Fpreprocess],
+ postprocess [Fpostprocess; try exact Fq_1_neq_0; try assumption],
+ constants [Fconstant],
+ div (@Fmorph_div_theory q),
+ power_tac (@Fpower_theory q) [Fexp_tac]).
+
+ Definition sqrt_valid (a : F q) := ((sqrt_mod_q a) ^ 2 = a)%F.
+
+ Lemma solve_sqrt_valid : forall p, onCurve p ->
+ sqrt_valid (solve_for_x2 (snd p)).
+ Proof.
+ intros ? onCurve_xy.
+ destruct p as [x y]; simpl.
+ rewrite (solve_correct x y) in onCurve_xy.
+ rewrite <- onCurve_xy.
+ unfold sqrt_valid.
+ eapply sqrt_mod_q_valid; eauto.
+ unfold isSquare; eauto.
+ Grab Existential Variables. eauto.
+ Qed.
+
+ Lemma solve_onCurve: forall (y : F q), sqrt_valid (solve_for_x2 y) ->
+ onCurve (sqrt_mod_q (solve_for_x2 y), y).
+ Proof.
+ intros.
+ unfold sqrt_valid in *.
+ apply solve_correct; auto.
+ Qed.
+
+ Lemma solve_opp_onCurve: forall (y : F q), sqrt_valid (solve_for_x2 y) ->
+ onCurve (opp (sqrt_mod_q (solve_for_x2 y)), y).
+ Proof.
+ intros y sqrt_valid_x2.
+ unfold sqrt_valid in *.
+ apply solve_correct.
+ rewrite <- sqrt_valid_x2 at 2.
+ ring.
+ Qed.
+
+ Let sign_bit (x : F CompleteEdwardsCurve.q) :=
+ match (enc x) with
+ | Word.WO => false
+ | Word.WS b _ w' => b
+ end.
+
+ Definition point_enc_coordinates (p : (F q * F q)) : Word.word (S sz) := let '(x,y) := p in
+ Word.WS (sign_bit x) (enc y).
+
+ Let point_enc (p : CompleteEdwardsCurve.point) : Word.word (S sz) := let '(x,y) := proj1_sig p in
+ Word.WS (sign_bit x) (enc y).
+
+ Definition point_dec_coordinates (sign_bit : F q -> bool) (w : Word.word (S sz)) : option (F q * F q) :=
+ match dec (Word.wtl w) with
+ | None => None
+ | Some y => let x2 := solve_for_x2 y in
+ let x := sqrt_mod_q x2 in
+ if F_eq_dec (x ^ 2) x2
+ then
+ let p := (if Bool.eqb (whd w) (sign_bit x) then x else opp x, y) in
+ if (andb (F_eqb x 0) (whd w))
+ then None (* special case for 0, since its opposite has the same sign; if the sign bit of 0 is 1, produce None.*)
+ else Some p
+ else None
+ end.
+
+ Ltac inversion_Some_eq := match goal with [H: Some ?x = Some ?y |- _] => inversion H; subst end.
+
+ Lemma point_dec_coordinates_onCurve : forall w p, point_dec_coordinates sign_bit w = Some p -> onCurve p.
+ Proof.
+ unfold point_dec_coordinates; intros.
+ edestruct dec; [ | congruence].
+ break_if; [ | congruence].
+ break_if; [ congruence | ].
+ break_if; inversion_Some_eq; auto using solve_onCurve, solve_opp_onCurve.
+ Qed.
+(*
+ Definition point_dec (w : word (S sz)) : option point.
+ case_eq (point_dec_coordinates w); intros; [ | apply None].
+ apply Some.
+ eapply mkPoint.
+ eapply point_dec_coordinates_onCurve; eauto.
+ Defined.
+*)
+ Lemma option_eq_dec : forall {A} (x y : option A), {x = y} + {x <> y}.
+ Proof.
+ decide equality.
+ Admitted.
+
+
+ Definition point_dec' w p : option point :=
+ match (option_eq_dec (point_dec_coordinates sign_bit w) (Some p)) with
+ | left EQ => Some (mkPoint p (point_dec_coordinates_onCurve w p EQ))
+ | right _ => None (* this case is never reached *)
+ end.
+
+ Definition point_dec (w : word (S sz)) : option point :=
+ match (point_dec_coordinates sign_bit w) with
+ | Some p => point_dec' w p
+ | None => None
+ end.
+
+ Lemma enc_first_bit_opp : forall (x : F q), x <> 0 ->
+ match enc x with
+ | WO => True
+ | WS b n w => match enc (opp x) with
+ | WO => False
+ | WS b' _ _ => b' = negb b
+ end
+ end.
+ Proof.
+ Admitted.
+
+ Lemma first_bit_zero : match enc 0 with
+ | WO => False
+ | WS b _ _ => b = false
+ end.
+ Admitted.
+
+ Lemma sign_bit_opp_negb : forall x, x <> 0 -> negb (sign_bit x) = sign_bit (opp x).
+ Proof.
+ intros x x_nonzero.
+ unfold sign_bit.
+ pose proof (enc_first_bit_opp x x_nonzero).
+ pose proof (shatter_word (enc x)) as shatter_enc_x.
+ pose proof (shatter_word (enc (opp x))) as shatter_enc_opp.
+ destruct sz; try omega.
+ rewrite shatter_enc_x, shatter_enc_opp in *.
+ auto.
+ Qed.
+
+ Lemma Fq_encoding_canonical : forall w (n : F q), dec w = Some n -> enc n = w.
+ Admitted.
+
+ (* TODO : move *)
+ Lemma sqrt_mod_q_0 : forall x : F q, sqrt_mod_q x = 0 -> x = 0.
+ Proof.
+ unfold sqrt_mod_q; intros.
+ break_if.
+ - match goal with [ H : ?sqrt_x ^ 2 = x, H' : ?sqrt_x = 0 |- _ ] => rewrite <-H, H' end.
+ ring.
+ - match goal with
+ | [H : sqrt_minus1 * _ = 0 |- _ ]=>
+ apply Fq_mul_zero_why in H; destruct H as [sqrt_minus1_zero | ? ];
+ [ | eapply Fq_root_zero; eauto ]
+ end.
+ unfold sqrt_minus1 in sqrt_minus1_zero.
+ rewrite sqrt_minus1_zero in sqrt_minus1_valid.
+ exfalso.
+ pose proof (@F_opp_spec q 1) as opp_spec_1.
+ rewrite <-sqrt_minus1_valid in opp_spec_1.
+ assert (((1 + 0 ^ 2) : F q) = (1 : F q)) as ring_subst by ring.
+ rewrite ring_subst in *.
+ apply Fq_1_neq_0; assumption.
+ Qed.
+
+ Lemma sign_bit_zero : sign_bit 0 = false.
+ Proof.
+ unfold sign_bit.
+ pose proof first_bit_zero.
+ destruct sz; try omega.
+ pose proof (shatter_word (enc 0)) as shatter_enc0.
+ simpl in shatter_enc0; rewrite shatter_enc0 in *; assumption.
+ Qed.
+
+ Lemma point_coordinates_encoding_canonical : forall w p,
+ point_dec_coordinates sign_bit w = Some p -> point_enc_coordinates p = w.
+ Proof.
+ unfold point_dec_coordinates, point_enc_coordinates; intros ? ? coord_dec_Some.
+ case_eq (dec (wtl w)); [ intros ? dec_Some | intros dec_None; rewrite dec_None in *; congruence ].
+ destruct p.
+ rewrite (shatter_word w).
+ f_equal; rewrite dec_Some in *;
+ do 2 (break_if; try congruence); inversion coord_dec_Some; subst.
+ + destruct (F_eq_dec (sqrt_mod_q (solve_for_x2 f1)) 0%F) as [sqrt_0 | ?].
+ - rewrite sqrt_0 in *.
+ apply sqrt_mod_q_0 in sqrt_0.
+ rewrite sqrt_0 in *.
+ break_if; [symmetry; auto using Bool.eqb_prop | ].
+ rewrite sign_bit_zero in *.
+ simpl in Heqb; rewrite Heqb in *.
+ discriminate.
+ - break_if.
+ symmetry; auto using Bool.eqb_prop.
+ rewrite <- sign_bit_opp_negb by auto.
+ destruct (whd w); inversion Heqb0; break_if; auto.
+ + inversion coord_dec_Some; subst.
+ auto using Fq_encoding_canonical.
+Qed.
+
+ Lemma point_encoding_canonical : forall w x, point_dec w = Some x -> point_enc x = w.
+ Proof.
+ (*
+ unfold point_enc; intros.
+ unfold point_dec in *.
+ assert (point_dec_coordinates w = Some (proj1_sig x)). {
+ set (y := point_dec_coordinates w) in *.
+ revert H.
+ dependent destruction y. intros.
+ rewrite H0 in H.
+ *)
+ Admitted.
+
+Lemma point_dec_coordinates_correct w
+ : option_map (@proj1_sig _ _) (point_dec w) = point_dec_coordinates sign_bit w.
+Proof.
+ unfold point_dec, option_map.
+ do 2 break_match; try congruence; unfold point_dec' in *;
+ break_match; try congruence.
+ inversion_Some_eq.
+ reflexivity.
+Qed.
+
+Lemma y_decode : forall p, dec (wtl (point_enc_coordinates p)) = Some (snd p).
+Proof.
+ intros.
+ destruct p as [x y]; simpl.
+ exact (encoding_valid y).
+Qed.
+
+
+Lemma wordToN_enc_neq_opp : forall x, x <> 0 -> (wordToN (enc (opp x)) <> wordToN (enc x))%N.
+Proof.
+ intros x x_nonzero.
+ intro false_eq.
+ apply x_nonzero.
+ apply F_eq_opp_zero; try apply two_lt_q.
+ apply wordToN_inj in false_eq.
+ apply encoding_inj in false_eq.
+ auto.
+Qed.
+
+Lemma sign_bit_opp : forall x y, y <> 0 ->
+ (sign_bit x <> sign_bit y <-> sign_bit x = sign_bit (opp y)).
+Proof.
+ split; intro sign_mismatch; case_eq (sign_bit x); case_eq (sign_bit y);
+ try congruence; intros y_sign x_sign; rewrite <- sign_bit_opp_negb in * by auto;
+ rewrite y_sign, x_sign in *; reflexivity || discriminate.
+Qed.
+
+Lemma sign_bit_squares : forall x y, y <> 0 -> x ^ 2 = y ^ 2 ->
+ sign_bit x = sign_bit y -> x = y.
+Proof.
+ intros ? ? y_nonzero squares_eq sign_match.
+ destruct (sqrt_solutions _ _ squares_eq) as [? | eq_opp]; auto.
+ assert (sign_bit x = sign_bit (opp y)) as sign_mismatch by (f_equal; auto).
+ apply sign_bit_opp in sign_mismatch; auto.
+ congruence.
+Qed.
+
+Lemma sign_bit_match : forall x x' y : F q, onCurve (x, y) -> onCurve (x', y) ->
+ sign_bit x = sign_bit x' -> x = x'.
+Proof.
+ intros ? ? ? onCurve_x onCurve_x' sign_match.
+ apply solve_correct in onCurve_x.
+ apply solve_correct in onCurve_x'.
+ destruct (F_eq_dec x' 0).
+ + subst.
+ rewrite Fq_pow_zero in onCurve_x' by congruence.
+ rewrite <- onCurve_x' in *.
+ eapply Fq_root_zero; eauto.
+ + apply sign_bit_squares; auto.
+ rewrite onCurve_x, onCurve_x'.
+ reflexivity.
+Qed.
+(*
+Lemma blah : forall x y, (F_eqb (sqrt_mod_q (solve_for_x2 y)) 0 && sign_bit x)%bool = true.
+*)
+
+Lemma point_encoding_coordinates_valid : forall p, onCurve p ->
+ point_dec_coordinates sign_bit (point_enc_coordinates p) = Some p.
+Proof.
+ intros p onCurve_p.
+ unfold point_dec_coordinates.
+ rewrite y_decode.
+ pose proof (solve_sqrt_valid p onCurve_p) as solve_sqrt_valid_p.
+ unfold sqrt_valid in *.
+ destruct p as [x y].
+ simpl in *.
+ destruct (F_eq_dec ((sqrt_mod_q (solve_for_x2 y)) ^ 2) (solve_for_x2 y)); intuition.
+ break_if; f_equal.
+ + case_eq (F_eqb (sqrt_mod_q (solve_for_x2 y)) 0); intros eqb_0.
+(*
+ SearchAbout F_eqb.
+
+ [ | simpl in *; congruence].
+
+
+
+ rewrite Bool.eqb_true_iff in Heqb.
+ pose proof (solve_onCurve y solve_sqrt_valid_p).
+ f_equal.
+ apply (sign_bit_match _ _ y); auto.
+ + rewrite Bool.eqb_false_iff in Heqb.
+ pose proof (solve_opp_onCurve y solve_sqrt_valid_p).
+ f_equal.
+ apply sign_bit_opp in Heqb.
+ apply (sign_bit_match _ _ y); auto.
+ intro eq_zero.
+ apply solve_correct in onCurve_p.
+ rewrite eq_zero in *.
+ rewrite Fq_pow_zero in solve_sqrt_valid_p by congruence.
+ rewrite <- solve_sqrt_valid_p in onCurve_p.
+ apply Fq_root_zero in onCurve_p.
+ rewrite onCurve_p in Heqb; auto.
+*)
+Admitted.
+
+Lemma point_dec'_valid : forall p,
+ point_dec' (point_enc_coordinates (proj1_sig p)) (proj1_sig p) = Some p.
+Proof.
+ unfold point_dec'; intros.
+ break_match.
+ + f_equal.
+ destruct p.
+ apply point_eq.
+ reflexivity.
+ + rewrite point_encoding_coordinates_valid in n by apply (proj2_sig p).
+ congruence.
+Qed.
+
+Lemma point_encoding_valid : forall p, point_dec (point_enc p) = Some p.
+Proof.
+ intros.
+ unfold point_dec.
+ replace (point_enc p) with (point_enc_coordinates (proj1_sig p)) by reflexivity.
+ break_match; rewrite point_encoding_coordinates_valid in * by apply (proj2_sig p); try congruence.
+ inversion_Some_eq.
+ eapply point_dec'_valid.
+Qed.
+
+End PointEncoding.
diff --git a/src/Encoding/PointEncodingTheorems.v b/src/Encoding/PointEncodingTheorems.v
new file mode 100644
index 000000000..7bf207c88
--- /dev/null
+++ b/src/Encoding/PointEncodingTheorems.v
@@ -0,0 +1,189 @@
+
+Section PointEncoding.
+ Context {prm: CompleteEdwardsCurve.TwistedEdwardsParams} {sz : nat}
+ {FqEncoding : encoding of ModularArithmetic.F (CompleteEdwardsCurve.q) as Word.word sz}
+ {q_5mod8 : (CompleteEdwardsCurve.q mod 8 = 5)%Z}
+ {sqrt_minus1_valid : (@ZToField CompleteEdwardsCurve.q 2 ^ BinInt.Z.to_N (CompleteEdwardsCurve.q / 4)) ^ 2 = opp 1}.
+ Existing Instance CompleteEdwardsCurve.prime_q.
+
+ Add Field Ffield : (@PrimeFieldTheorems.Ffield_theory CompleteEdwardsCurve.q _)
+ (morphism (@ModularArithmeticTheorems.Fring_morph CompleteEdwardsCurve.q),
+ preprocess [ModularArithmeticTheorems.Fpreprocess],
+ postprocess [ModularArithmeticTheorems.Fpostprocess; try exact PrimeFieldTheorems.Fq_1_neq_0; try assumption],
+ constants [ModularArithmeticTheorems.Fconstant],
+ div (@ModularArithmeticTheorems.Fmorph_div_theory CompleteEdwardsCurve.q),
+ power_tac (@ModularArithmeticTheorems.Fpower_theory CompleteEdwardsCurve.q) [ModularArithmeticTheorems.Fexp_tac]).
+
+ Definition sqrt_valid (a : F q) := ((sqrt_mod_q a) ^ 2 = a)%F.
+
+ Lemma solve_sqrt_valid : forall (p : point),
+ sqrt_valid (solve_for_x2 (snd (proj1_sig p))).
+ Proof.
+ intros.
+ destruct p as [[x y] onCurve_xy]; simpl.
+ rewrite (solve_correct x y) in onCurve_xy.
+ rewrite <- onCurve_xy.
+ unfold sqrt_valid.
+ eapply sqrt_mod_q_valid; eauto.
+ unfold isSquare; eauto.
+ Grab Existential Variables. eauto.
+ Qed.
+
+ Lemma solve_onCurve: forall (y : F q), sqrt_valid (solve_for_x2 y) ->
+ onCurve (sqrt_mod_q (solve_for_x2 y), y).
+ Proof.
+ intros.
+ unfold sqrt_valid in *.
+ apply solve_correct; auto.
+ Qed.
+
+ Lemma solve_opp_onCurve: forall (y : F q), sqrt_valid (solve_for_x2 y) ->
+ onCurve (opp (sqrt_mod_q (solve_for_x2 y)), y).
+ Proof.
+ intros y sqrt_valid_x2.
+ unfold sqrt_valid in *.
+ apply solve_correct.
+ rewrite <- sqrt_valid_x2 at 2.
+ ring.
+ Qed.
+
+Definition sign_bit (x : F q) := (wordToN (enc (opp x)) <? wordToN (enc x))%N.
+Definition point_enc (p : point) : word (S sz) := let '(x,y) := proj1_sig p in
+ WS (sign_bit x) (enc y).
+Definition point_dec_coordinates (w : word (S sz)) : option (F q * F q) :=
+ match dec (wtl w) with
+ | None => None
+ | Some y => let x2 := solve_for_x2 y in
+ let x := sqrt_mod_q x2 in
+ if F_eq_dec (x ^ 2) x2
+ then
+ let p := (if Bool.eqb (whd w) (sign_bit x) then x else opp x, y) in
+ Some p
+ else None
+ end.
+
+Definition point_dec (w : word (S sz)) : option point :=
+ match dec (wtl w) with
+ | None => None
+ | Some y => let x2 := solve_for_x2 y in
+ let x := sqrt_mod_q x2 in
+ match (F_eq_dec (x ^ 2) x2) with
+ | right _ => None
+ | left EQ => if Bool.eqb (whd w) (sign_bit x)
+ then Some (mkPoint (x, y) (solve_onCurve y EQ))
+ else Some (mkPoint (opp x, y) (solve_opp_onCurve y EQ))
+ end
+ end.
+
+Lemma point_dec_coordinates_correct w
+ : option_map (@proj1_sig _ _) (point_dec w) = point_dec_coordinates w.
+Proof.
+ unfold point_dec, point_dec_coordinates.
+ edestruct dec; [ | reflexivity ].
+ edestruct @F_eq_dec; [ | reflexivity ].
+ edestruct @Bool.eqb; reflexivity.
+Qed.
+
+Lemma y_decode : forall p, dec (wtl (point_enc p)) = Some (snd (proj1_sig p)).
+Proof.
+ intros.
+ destruct p as [[x y] onCurve_p]; simpl.
+ exact (encoding_valid y).
+Qed.
+
+
+Lemma wordToN_enc_neq_opp : forall x, x <> 0 -> (wordToN (enc (opp x)) <> wordToN (enc x))%N.
+Proof.
+ intros x x_nonzero.
+ intro false_eq.
+ apply x_nonzero.
+ apply F_eq_opp_zero; try apply two_lt_q.
+ apply wordToN_inj in false_eq.
+ apply encoding_inj in false_eq.
+ auto.
+Qed.
+
+Lemma sign_bit_opp_negb : forall x, x <> 0 -> negb (sign_bit x) = sign_bit (opp x).
+Proof.
+ intros x x_nonzero.
+ unfold sign_bit.
+ rewrite <- N.leb_antisym.
+ rewrite N.ltb_compare, N.leb_compare.
+ rewrite F_opp_involutive.
+ case_eq (wordToN (enc x) ?= wordToN (enc (opp x)))%N; auto.
+ intro wordToN_enc_eq.
+ pose proof (wordToN_enc_neq_opp x x_nonzero).
+ apply N.compare_eq_iff in wordToN_enc_eq.
+ congruence.
+Qed.
+
+Lemma sign_bit_opp : forall x y, y <> 0 ->
+ (sign_bit x <> sign_bit y <-> sign_bit x = sign_bit (opp y)).
+Proof.
+ split; intro sign_mismatch; case_eq (sign_bit x); case_eq (sign_bit y);
+ try congruence; intros y_sign x_sign; rewrite <- sign_bit_opp_negb in * by auto;
+ rewrite y_sign, x_sign in *; reflexivity || discriminate.
+Qed.
+
+Lemma sign_bit_squares : forall x y, y <> 0 -> x ^ 2 = y ^ 2 ->
+ sign_bit x = sign_bit y -> x = y.
+Proof.
+ intros ? ? y_nonzero squares_eq sign_match.
+ destruct (sqrt_solutions _ _ squares_eq) as [? | eq_opp]; auto.
+ assert (sign_bit x = sign_bit (opp y)) as sign_mismatch by (f_equal; auto).
+ apply sign_bit_opp in sign_mismatch; auto.
+ congruence.
+Qed.
+
+Lemma sign_bit_match : forall x x' y : F q, onCurve (x, y) -> onCurve (x', y) ->
+ sign_bit x = sign_bit x' -> x = x'.
+Proof.
+ intros ? ? ? onCurve_x onCurve_x' sign_match.
+ apply solve_correct in onCurve_x.
+ apply solve_correct in onCurve_x'.
+ destruct (F_eq_dec x' 0).
+ + subst.
+ rewrite Fq_pow_zero in onCurve_x' by congruence.
+ rewrite <- onCurve_x' in *.
+ eapply Fq_root_zero; eauto.
+ + apply sign_bit_squares; auto.
+ rewrite onCurve_x, onCurve_x'.
+ reflexivity.
+Qed.
+
+Lemma point_encoding_valid : forall p, point_dec (point_enc p) = Some p.
+Proof.
+ intros.
+ unfold point_dec.
+ rewrite y_decode.
+ pose proof solve_sqrt_valid p as solve_sqrt_valid_p.
+ unfold sqrt_valid in *.
+ destruct p as [[x y] onCurve_p].
+ simpl in *.
+ destruct (F_eq_dec ((sqrt_mod_q (solve_for_x2 y)) ^ 2) (solve_for_x2 y)); intuition.
+ break_if; f_equal; apply point_eq.
+ + rewrite Bool.eqb_true_iff in Heqb.
+ pose proof (solve_onCurve y solve_sqrt_valid_p).
+ f_equal.
+ apply (sign_bit_match _ _ y); auto.
+ + rewrite Bool.eqb_false_iff in Heqb.
+ pose proof (solve_opp_onCurve y solve_sqrt_valid_p).
+ f_equal.
+ apply sign_bit_opp in Heqb.
+ apply (sign_bit_match _ _ y); auto.
+ intro eq_zero.
+ apply solve_correct in onCurve_p.
+ rewrite eq_zero in *.
+ rewrite Fq_pow_zero in solve_sqrt_valid_p by congruence.
+ rewrite <- solve_sqrt_valid_p in onCurve_p.
+ apply Fq_root_zero in onCurve_p.
+ rewrite onCurve_p in Heqb; auto.
+Qed.
+
+Instance point_encoding : encoding of point as (word (S sz)) := {
+ enc := point_enc;
+ dec := point_dec;
+ encoding_valid := point_encoding_valid
+}.
+
+End PointEncoding.