aboutsummaryrefslogtreecommitdiff
path: root/src/Algebra.v
diff options
context:
space:
mode:
authorGravatar Andres Erbsen <andreser@mit.edu>2016-06-15 18:04:38 -0400
committerGravatar Andres Erbsen <andreser@mit.edu>2016-06-15 18:04:43 -0400
commitb3f932ed66422e62bb720ee862dc99e9ae6592a4 (patch)
tree578a376d0f9ae548e8cbb0cd1c6fe12c133ae9ec /src/Algebra.v
parentb9581c7bd814d7ca7663438d4a5d92ae9fab0ce6 (diff)
nsatz: reimplement, integrate, demonstrate
Diffstat (limited to 'src/Algebra.v')
-rw-r--r--src/Algebra.v511
1 files changed, 511 insertions, 0 deletions
diff --git a/src/Algebra.v b/src/Algebra.v
new file mode 100644
index 000000000..85602e64a
--- /dev/null
+++ b/src/Algebra.v
@@ -0,0 +1,511 @@
+Require Import Coq.Classes.Morphisms. Require Coq.Setoids.Setoid.
+Require Import Util.Tactics.
+Close Scope nat_scope. Close Scope type_scope. Close Scope core_scope.
+
+Section Algebra.
+ Context {T:Type} {eq:T->T->Prop}.
+ Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
+
+ Class is_eq_dec := { eq_dec : forall x y : T, {x=y} + {x<>y} }.
+
+ Section SingleOperation.
+ Context {op:T->T->T}.
+
+ Class is_associative := { associative : forall x y z, op x (op y z) = op (op x y) z }.
+
+ Context {id:T}.
+
+ Class is_left_identity := { left_identity : forall x, op id x = x }.
+ Class is_right_identity := { right_identity : forall x, op x id = x }.
+
+ Class monoid :=
+ {
+ monoid_is_associative : is_associative;
+ monoid_is_left_identity : is_left_identity;
+ monoid_is_right_identity : is_right_identity
+ }.
+ Global Existing Instance monoid_is_associative.
+ Global Existing Instance monoid_is_left_identity.
+ Global Existing Instance monoid_is_right_identity.
+
+ Context {inv:T->T}.
+ Class is_left_inverse := { left_inverse : forall x, op (inv x) x = id }.
+ Class is_right_inverse := { right_inverse : forall x, op x (inv x) = id }.
+
+ Class group :=
+ {
+ group_monoid : monoid;
+ group_is_left_inverse : is_left_inverse;
+ group_is_right_inverse : is_right_inverse;
+
+ group_Equivalence : Equivalence eq;
+ group_is_eq_dec : is_eq_dec;
+ group_op_Proper: Proper (respectful eq (respectful eq eq)) op;
+ group_inv_Proper: Proper (respectful eq eq) inv
+ }.
+ Global Existing Instance group_monoid.
+ Global Existing Instance group_is_left_inverse.
+ Global Existing Instance group_is_right_inverse.
+ Global Existing Instance group_Equivalence.
+ Global Existing Instance group_is_eq_dec.
+ Global Existing Instance group_op_Proper.
+ Global Existing Instance group_inv_Proper.
+
+ Class is_commutative := { commutative : forall x y, op x y = op y x }.
+
+ Record abelian_group :=
+ {
+ abelian_group_group : group;
+ abelian_group_is_commutative : is_commutative
+ }.
+ Existing Class abelian_group.
+ Global Existing Instance abelian_group_group.
+ Global Existing Instance abelian_group_is_commutative.
+ End SingleOperation.
+
+ Section AddMul.
+ Context {zero one:T}. Local Notation "0" := zero. Local Notation "1" := one.
+ Context {opp:T->T}. Local Notation "- x" := (opp x).
+ Context {add:T->T->T} {sub:T->T->T} {mul:T->T->T}.
+ Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul.
+
+ Class is_left_distributive := { left_distributive : forall a b c, a * (b + c) = a * b + a * c }.
+ Class is_right_distributive := { right_distributive : forall a b c, (b + c) * a = b * a + c * a }.
+
+
+ Class ring :=
+ {
+ ring_abelian_group_add : abelian_group (op:=add) (id:=zero) (inv:=opp);
+ ring_monoid_mul : monoid (op:=mul) (id:=one);
+ ring_is_left_distributive : is_left_distributive;
+ ring_is_right_distributive : is_right_distributive;
+
+ ring_sub_definition : forall x y, x - y = x + opp y;
+
+ ring_mul_Proper : Proper (respectful eq (respectful eq eq)) mul;
+ ring_sub_Proper : Proper(respectful eq (respectful eq eq)) sub
+ }.
+ Global Existing Instance ring_abelian_group_add.
+ Global Existing Instance ring_monoid_mul.
+ Global Existing Instance ring_is_left_distributive.
+ Global Existing Instance ring_is_right_distributive.
+ Global Existing Instance ring_mul_Proper.
+ Global Existing Instance ring_sub_Proper.
+
+ Class commutative_ring :=
+ {
+ commutative_ring_ring : ring;
+ commutative_ring_is_commutative : is_commutative (op:=mul)
+ }.
+ Global Existing Instance commutative_ring_ring.
+ Global Existing Instance commutative_ring_is_commutative.
+
+ Class is_mul_nonzero_nonzero := { mul_nonzero_nonzero : forall x y, x<>0 -> y<>0 -> x*y<>0 }.
+
+ Class is_zero_neq_one := { zero_neq_one : zero <> one }.
+
+ Class integral_domain :=
+ {
+ integral_domain_commutative_ring : commutative_ring;
+ integral_domain_is_mul_nonzero_nonzero : is_mul_nonzero_nonzero;
+ integral_domain_is_zero_neq_one : is_zero_neq_one
+ }.
+ Global Existing Instance integral_domain_commutative_ring.
+ Global Existing Instance integral_domain_is_mul_nonzero_nonzero.
+ Global Existing Instance integral_domain_is_zero_neq_one.
+
+ Context {inv:T->T} {div:T->T->T}.
+ Class is_left_multiplicative_inverse := { left_multiplicative_inverse : forall x, x<>0 -> (inv x) * x = 1 }.
+
+ Class field :=
+ {
+ field_commutative_ring : commutative_ring;
+ field_is_left_multiplicative_inverse : is_left_multiplicative_inverse;
+ field_domain_is_zero_neq_one : is_zero_neq_one;
+
+ field_div_definition : forall x y , div x y = x * inv y;
+
+ field_inv_Proper : Proper (respectful eq eq) inv;
+ field_div_Proper : Proper (respectful eq (respectful eq eq)) div
+ }.
+ Global Existing Instance field_commutative_ring.
+ Global Existing Instance field_is_left_multiplicative_inverse.
+ Global Existing Instance field_domain_is_zero_neq_one.
+ Global Existing Instance field_inv_Proper.
+ Global Existing Instance field_div_Proper.
+ End AddMul.
+End Algebra.
+
+
+Section GenericCancellation.
+ Context {T:Type} {eq:T->T->Prop} {Equivalence_eq : Equivalence eq}.
+ Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
+ Context {op:T->T->T} {Proper_op : Proper(respectful eq (respectful eq eq)) op}.
+ Context {id:T}.
+
+ Context {Hassoc: is_associative (op:=op) (eq:=eq)}.
+ Context {Hrid: is_right_identity (op:=op) (eq:=eq) (id := id)}.
+ Context {Hlid: is_left_identity (op:=op) (eq:=eq) (id:=id) }.
+
+ Lemma cancel_right z iz (Hinv:op z iz = id) :
+ forall x y, op x z = op y z <-> x = y.
+ Proof.
+ split; intros.
+ { assert (op (op x z) iz = op (op y z) iz) as Hcut by (f_equiv; assumption).
+ rewrite <-associative in Hcut.
+ rewrite <-!associative, !Hinv, !right_identity in Hcut; exact Hcut. }
+ { f_equiv; assumption. }
+ Qed.
+
+ Lemma cancel_left z iz (Hinv:op iz z = id) :
+ forall x y, op z x = op z y <-> x = y.
+ Proof.
+ split; intros.
+ { assert (op iz (op z x) = op iz (op z y)) as Hcut by (f_equiv; assumption).
+ rewrite !associative, !Hinv, !left_identity in Hcut; exact Hcut. }
+ { f_equiv; assumption. }
+ Qed.
+End GenericCancellation.
+
+Module Group.
+ Section BasicProperties.
+ Context {T eq op id inv} `{@group T eq op id inv}.
+ Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
+
+ Lemma cancel_left : forall z x y, op z x = op z y <-> x = y.
+ Proof. eauto using cancel_left, left_inverse. Qed.
+ Lemma cancel_right : forall z x y, op x z = op y z <-> x = y.
+ Proof. eauto using cancel_right, right_inverse. Qed.
+ End BasicProperties.
+End Group.
+
+Require Coq.nsatz.Nsatz.
+
+Ltac dropAlgebraSyntax :=
+ cbv beta delta [
+ Algebra_syntax.zero
+ Algebra_syntax.one
+ Algebra_syntax.addition
+ Algebra_syntax.multiplication
+ Algebra_syntax.subtraction
+ Algebra_syntax.opposite
+ Algebra_syntax.equality
+ Algebra_syntax.bracket
+ Algebra_syntax.power
+ ] in *.
+
+Ltac dropRingSyntax :=
+ dropAlgebraSyntax;
+ cbv beta delta [
+ Ncring.zero_notation
+ Ncring.one_notation
+ Ncring.add_notation
+ Ncring.mul_notation
+ Ncring.sub_notation
+ Ncring.opp_notation
+ Ncring.eq_notation
+ ] in *.
+
+Module Ring.
+ Section Ring.
+ Context {T eq zero one opp add sub mul} `{@ring T eq zero one opp add sub mul}.
+ Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
+ Local Notation "0" := zero. Local Notation "1" := one.
+ Local Infix "+" := add. Local Infix "-" := sub. Local Infix "*" := mul.
+
+ Lemma mul_0_r : forall x, x * 0 = 0.
+ Proof.
+ intros.
+ assert (x*0 = x*0) as Hx by reflexivity.
+ rewrite <-(left_identity 0), left_distributive in Hx at 1.
+ assert (x*0 + x*0 - x*0 = x*0 - x*0) as Hxx by (f_equiv; exact Hx).
+ rewrite !ring_sub_definition, <-associative, right_inverse, right_identity in Hxx; exact Hxx.
+ Qed.
+
+ Lemma mul_0_l : forall x, x * 0 = 0.
+ Proof.
+ intros.
+ assert (x*0 = x*0) as Hx by reflexivity.
+ rewrite <-(left_identity 0), left_distributive in Hx at 1.
+ assert (opp (x*0) + (x*0 + x*0) = opp (x*0) + x*0) as Hxx by (f_equiv; exact Hx).
+ rewrite associative, left_inverse, left_identity in Hxx; exact Hxx.
+ Qed.
+
+ Global Instance Ncring_Ring_ops : @Ncring.Ring_ops T zero one add mul sub opp eq.
+ Global Instance Ncring_Ring : @Ncring.Ring T zero one add mul sub opp eq Ncring_Ring_ops.
+ Proof.
+ split; dropRingSyntax; eauto using left_identity, right_identity, commutative, associative, right_inverse, left_distributive, right_distributive, ring_sub_definition with core typeclass_instances.
+ - (* TODO: why does [eauto using @left_identity with typeclass_instances] not work? *)
+ eapply @left_identity; eauto with typeclass_instances.
+ - eapply @right_identity; eauto with typeclass_instances.
+ - eapply associative.
+ Qed.
+ End Ring.
+
+ Section TacticSupportCommutative.
+ Context {T eq zero one opp add sub mul} `{@commutative_ring T eq zero one opp add sub mul}.
+
+ Global Instance Cring_Cring_commutative_ring :
+ @Cring.Cring T zero one add mul sub opp eq Ring.Ncring_Ring_ops Ring.Ncring_Ring.
+ Proof. unfold Cring.Cring; intros; dropRingSyntax. eapply commutative. Qed.
+ End TacticSupportCommutative.
+End Ring.
+
+Module IntegralDomain.
+ Section CommutativeRing.
+ Context {T eq zero one opp add sub mul} `{@integral_domain T eq zero one opp add sub mul}.
+
+ Lemma mul_nonzero_nonzero_cases (x y : T)
+ : eq (mul x y) zero -> eq x zero \/ eq y zero.
+ Proof.
+ pose proof mul_nonzero_nonzero x y.
+ destruct (eq_dec x zero); destruct (eq_dec y zero); intuition.
+ Qed.
+
+ Global Instance Integral_domain :
+ @Integral_domain.Integral_domain T zero one add mul sub opp eq Ring.Ncring_Ring_ops
+ Ring.Ncring_Ring Ring.Cring_Cring_commutative_ring.
+ Proof.
+ split; dropRingSyntax.
+ - auto using mul_nonzero_nonzero_cases.
+ - intro bad; symmetry in bad; auto using zero_neq_one.
+ Qed.
+ End CommutativeRing.
+End IntegralDomain.
+
+Module Field.
+ Section Field.
+ Context {T eq zero one opp add mul sub inv div} `{@field T eq zero one opp add sub mul inv div}.
+ Local Infix "=" := eq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope.
+ Local Notation "0" := zero. Local Notation "1" := one.
+ Local Infix "+" := add. Local Infix "*" := mul.
+
+ Global Instance is_mul_nonzero_nonzero : @is_mul_nonzero_nonzero T eq 0 mul.
+ Proof.
+ constructor. intros x y Hx Hy Hxy.
+ assert (0 = (inv y * (inv x * x)) * y) as H00 by (rewrite <-!associative, Hxy, !Ring.mul_0_r; reflexivity).
+ rewrite left_multiplicative_inverse in H00 by assumption.
+ rewrite right_identity in H00.
+ rewrite left_multiplicative_inverse in H00 by assumption.
+ auto using zero_neq_one.
+ Qed.
+
+ Global Instance integral_domain : @integral_domain T eq zero one opp add sub mul.
+ Proof.
+ split; auto using field_commutative_ring, field_domain_is_zero_neq_one, is_mul_nonzero_nonzero.
+ Qed.
+
+ Require Coq.setoid_ring.Field_theory.
+ Lemma field_theory_for_stdlib_tactic : Field_theory.field_theory 0 1 add mul sub opp div inv eq.
+ Proof.
+ constructor.
+ admit.
+ { intro H01. symmetry in H01. auto using zero_neq_one. }
+ { apply field_div_definition. }
+ { apply left_multiplicative_inverse. }
+ Qed.
+ End Field.
+End Field.
+
+
+(*** Tactics for manipulating field equations *)
+Require Import Coq.setoid_ring.Field_tac.
+
+Ltac guess_field :=
+ match goal with
+ | |- ?eq _ _ => constr:(_:field (eq:=eq))
+ | |- not (?eq _ _) => constr:(_:field (eq:=eq))
+ | [H: ?eq _ _ |- _ ] => constr:(_:field (eq:=eq))
+ | [H: not (?eq _ _) |- _] => constr:(_:field (eq:=eq))
+ end.
+
+Ltac common_denominator :=
+ let fld := guess_field in
+ lazymatch type of fld with
+ field (div:=?div) =>
+ lazymatch goal with
+ | |- appcontext[div] => field_simplify_eq
+ | |- _ => idtac
+ end
+ end.
+
+Ltac common_denominator_in H :=
+ let fld := guess_field in
+ lazymatch type of fld with
+ field (div:=?div) =>
+ lazymatch type of H with
+ | appcontext[div] => field_simplify_eq in H
+ | _ => idtac
+ end
+ end.
+
+Ltac common_denominator_all :=
+ common_denominator;
+ repeat match goal with [H: _ |- _ _ _ ] => common_denominator_in H end.
+
+Inductive field_simplify_done {T} : T -> Type :=
+ Field_simplify_done : forall H, field_simplify_done H.
+
+Ltac field_simplify_eq_hyps :=
+ repeat match goal with
+ [ H: _ |- _ ] =>
+ match goal with
+ | [ Ha : field_simplify_done H |- _ ] => fail
+ | _ => idtac
+ end;
+ field_simplify_eq in H;
+ unique pose proof (Field_simplify_done H)
+ end;
+ repeat match goal with [ H: field_simplify_done _ |- _] => clear H end.
+
+Ltac field_simplify_eq_all := field_simplify_eq_hyps; try field_simplify_eq.
+
+
+(*** Tactics for manipulating polynomial equations *)
+Require Nsatz.
+Require Import List.
+Open Scope core_scope.
+
+Generalizable All Variables.
+Lemma cring_sub_diag_iff {R zero eq sub} `{cring:Cring.Cring (R:=R) (ring0:=zero) (ring_eq:=eq) (sub:=sub)}
+ : forall x y, eq (sub x y) zero <-> eq x y.
+Proof.
+ split;intros Hx.
+ { eapply Nsatz.psos_r1b. eapply Hx. }
+ { eapply Nsatz.psos_r1. eapply Hx. }
+Qed.
+
+Ltac get_goal := lazymatch goal with |- ?g => g end.
+
+Ltac nsatz_equation_implications_to_list eq zero g :=
+ lazymatch g with
+ | eq ?p zero => constr:(p::nil)
+ | eq ?p zero -> ?g => let l := nsatz_equation_implications_to_list eq zero g in constr:(p::l)
+ end.
+
+Ltac nsatz_reify_equations eq zero :=
+ let g := get_goal in
+ let lb := nsatz_equation_implications_to_list eq zero g in
+ lazymatch (eval red in (Ncring_tac.list_reifyl (lterm:=lb))) with
+ (?variables, ?le) =>
+ lazymatch (eval compute in (List.rev le)) with
+ | ?reified_goal::?reified_givens => constr:(variables, reified_givens, reified_goal)
+ end
+ end.
+
+Ltac nsatz_get_free_variables reified_package :=
+ lazymatch reified_package with (?fv, _, _) => fv end.
+
+Ltac nsatz_get_reified_givens reified_package :=
+ lazymatch reified_package with (_, ?givens, _) => givens end.
+
+Ltac nsatz_get_reified_goal reified_package :=
+ lazymatch reified_package with (_, _, ?goal) => goal end.
+
+Require Import Coq.setoid_ring.Ring_polynom.
+Ltac nsatz_compute_to_goal sugar nparams reified_goal power reified_givens :=
+ nsatz_compute (PEc sugar :: PEc nparams :: PEpow reified_goal power :: reified_givens).
+
+Ltac nsatz_compute_get_leading_coefficient :=
+ lazymatch goal with
+ |- Logic.eq ((?a :: _ :: ?b) :: ?c) _ -> _ => a
+ end.
+
+Ltac nsatz_compute_get_certificate :=
+ lazymatch goal with
+ |- Logic.eq ((?a :: _ :: ?b) :: ?c) _ -> _ => constr:(c,b)
+ end.
+
+Ltac nsatz_rewrite_and_revert domain :=
+ lazymatch type of domain with
+ | @Integral_domain.Integral_domain ?F ?zero _ _ _ _ _ ?eq ?Fops ?FRing ?FCring =>
+ lazymatch goal with
+ | |- eq _ zero => idtac
+ | |- eq _ _ => rewrite <-(cring_sub_diag_iff (cring:=FCring))
+ end;
+ repeat match goal with
+ | [H : eq _ zero |- _ ] => revert H
+ | [H : eq _ _ |- _ ] => rewrite <-(cring_sub_diag_iff (cring:=FCring)) in H; revert H
+ end
+ end.
+
+Ltac nsatz_nonzero :=
+ try solve [apply Integral_domain.integral_domain_one_zero
+ |apply Integral_domain.integral_domain_minus_one_zero
+ |trivial].
+
+Ltac nsatz_domain_sugar_power domain sugar power :=
+ let nparams := constr:(BinInt.Zneg BinPos.xH) in (* some symbols can be "parameters", treated as coefficients *)
+ lazymatch type of domain with
+ | @Integral_domain.Integral_domain ?F ?zero _ _ _ _ _ ?eq ?Fops ?FRing ?FCring =>
+ nsatz_rewrite_and_revert domain;
+ let reified_package := nsatz_reify_equations eq zero in
+ let fv := nsatz_get_free_variables reified_package in
+ let interp := constr:(@Nsatz.PEevalR _ _ _ _ _ _ _ _ Fops fv) in
+ let reified_givens := nsatz_get_reified_givens reified_package in
+ let reified_goal := nsatz_get_reified_goal reified_package in
+ nsatz_compute_to_goal sugar nparams reified_goal power reified_givens;
+ let a := nsatz_compute_get_leading_coefficient in
+ let crt := nsatz_compute_get_certificate in
+ intros _ (* discard [nsatz_compute] output *); intros;
+ apply (fun Haa refl cond => @Integral_domain.Rintegral_domain_pow _ _ _ _ _ _ _ _ _ _ _ domain (interp a) _ (BinNat.N.to_nat power) Haa (@Nsatz.check_correct _ _ _ _ _ _ _ _ _ _ FCring fv reified_givens (PEmul a (PEpow reified_goal power)) crt refl cond));
+ [ nsatz_nonzero; cbv iota beta delta [Nsatz.PEevalR PEeval InitialRing.gen_phiZ InitialRing.gen_phiPOS]
+ | solve [vm_compute; exact (eq_refl true)] (* exact_no_check (eq_refl true) *)
+ | solve [repeat (split; [assumption|]); exact I] ]
+ end.
+
+Ltac nsatz_guess_domain :=
+ match goal with
+ | |- ?eq _ _ => constr:(_:Integral_domain.Integral_domain (ring_eq:=eq))
+ | |- not (?eq _ _) => constr:(_:Integral_domain.Integral_domain (ring_eq:=eq))
+ | [H: ?eq _ _ |- _ ] => constr:(_:Integral_domain.Integral_domain (ring_eq:=eq))
+ | [H: not (?eq _ _) |- _] => constr:(_:Integral_domain.Integral_domain (ring_eq:=eq))
+ end.
+
+Ltac nsatz_sugar_power sugar power :=
+ let domain := nsatz_guess_domain in
+ nsatz_domain_sugar_power domain sugar power.
+
+Tactic Notation "nsatz" constr(n) :=
+ let nn := (eval compute in (BinNat.N.of_nat n)) in
+ nsatz_sugar_power BinInt.Z0 nn.
+
+Tactic Notation "nsatz" := nsatz 1%nat || nsatz 2%nat || nsatz 3%nat || nsatz 4%nat || nsatz 5%nat.
+
+Ltac nsatz_contradict :=
+ intros;
+ let domain := nsatz_guess_domain in
+ lazymatch type of domain with
+ | @Integral_domain.Integral_domain _ ?zero ?one _ _ _ _ ?eq ?Fops ?FRing ?FCring =>
+ assert (eq one zero) as Hbad;
+ [nsatz; nsatz_nonzero
+ |destruct (Integral_domain.integral_domain_one_zero (Integral_domain:=domain) Hbad)]
+ end.
+
+(*** Polynomial equations over fields *)
+
+Ltac field_algebra :=
+ intros;
+ common_denominator_all;
+ try (nsatz; dropRingSyntax);
+ repeat (apply conj);
+ try solve
+ [unfold not; intro; nsatz_contradict
+ |nsatz_nonzero].
+
+Section Example.
+ Context {F zero one opp add sub mul inv div} `{F_field:field F eq zero one opp add sub mul inv div}.
+ Local Infix "+" := add. Local Infix "*" := mul. Local Infix "-" := sub. Local Infix "/" := div.
+ Local Notation "0" := zero. Local Notation "1" := one.
+
+ Add Field _ExampleField : (Field.field_theory_for_stdlib_tactic (T:=F)).
+
+ Example _example_nsatz x y : 1+1 <> 0 -> x + y = 0 -> x - y = 0 -> x = 0.
+ Proof. field_algebra. Qed.
+
+ Example _example_field_nsatz x y z : y <> 0 -> x/y = z -> z*y + y = x + y.
+ Proof. field_algebra. Qed.
+
+ Example _example_nonzero_nsatz_contradict x y : x * y = 1 -> not (x = 0).
+ Proof. intros. intro. nsatz_contradict. Qed.
+End Example. \ No newline at end of file