aboutsummaryrefslogtreecommitdiff
path: root/src/AbstractInterpretationProofs.v
diff options
context:
space:
mode:
authorGravatar Andres Erbsen <andreser@mit.edu>2019-01-08 01:59:52 -0500
committerGravatar Andres Erbsen <andreser@mit.edu>2019-01-09 12:44:11 -0500
commit3ec21c64b3682465ca8e159a187689b207c71de4 (patch)
tree2294367302480f1f4c29a2266e2d1c7c8af3ee48 /src/AbstractInterpretationProofs.v
parentdf7920808566c0d70b5388a0a750b40044635eb6 (diff)
move src/Experiments/NewPipeline/ to src/
Diffstat (limited to 'src/AbstractInterpretationProofs.v')
-rw-r--r--src/AbstractInterpretationProofs.v1335
1 files changed, 1335 insertions, 0 deletions
diff --git a/src/AbstractInterpretationProofs.v b/src/AbstractInterpretationProofs.v
new file mode 100644
index 000000000..6bf479dfe
--- /dev/null
+++ b/src/AbstractInterpretationProofs.v
@@ -0,0 +1,1335 @@
+Require Import Coq.micromega.Lia.
+Require Import Coq.ZArith.ZArith.
+Require Import Coq.Classes.Morphisms.
+Require Import Coq.Classes.RelationPairs.
+Require Import Coq.Relations.Relations.
+Require Import Crypto.Util.ZRange.
+Require Import Crypto.Util.ZRange.Operations.
+Require Import Crypto.Util.ZRange.BasicLemmas.
+Require Import Crypto.Util.ZRange.SplitBounds.
+Require Import Crypto.Util.Sum.
+Require Import Crypto.Util.LetIn.
+Require Import Crypto.Util.Prod.
+Require Import Crypto.Util.Sigma.
+Require Import Crypto.Util.Option.
+Require Import Crypto.Util.ListUtil.
+Require Import Crypto.Util.NatUtil.
+Require Import Crypto.Util.ZUtil.AddGetCarry.
+Require Import Crypto.Util.ZUtil.AddModulo.
+Require Import Crypto.Util.ZUtil.CC.
+Require Import Crypto.Util.ZUtil.MulSplit.
+Require Import Crypto.Util.ZUtil.Rshi.
+Require Import Crypto.Util.ZUtil.Zselect.
+Require Import Crypto.Util.ZUtil.Tactics.LtbToLt.
+Require Import Crypto.Util.ZUtil.Tactics.SplitMinMax.
+Require Import Crypto.Util.ZUtil.Tactics.ReplaceNegWithPos.
+Require Import Crypto.Util.HProp.
+Require Import Crypto.Util.PER.
+Require Import Crypto.Util.Tactics.BreakMatch.
+Require Import Crypto.Util.Tactics.DestructHead.
+Require Import Crypto.Util.Tactics.SplitInContext.
+Require Import Crypto.Util.Tactics.UniquePose.
+Require Import Crypto.Util.Tactics.SpecializeBy.
+Require Import Crypto.Util.Tactics.SpecializeAllWays.
+Require Import Crypto.Util.Tactics.Head.
+Require Import Crypto.Util.Tactics.DoWithHyp.
+Require Import Crypto.Language.
+Require Import Crypto.LanguageInversion.
+Require Import Crypto.LanguageWf.
+Require Import Crypto.UnderLetsProofs.
+Require Import Crypto.AbstractInterpretation.
+Require Import Crypto.AbstractInterpretationWf.
+Require Import Crypto.AbstractInterpretationZRangeProofs.
+
+Module Compilers.
+ Import Language.Compilers.
+ Import UnderLets.Compilers.
+ Import AbstractInterpretation.Compilers.
+ Import LanguageInversion.Compilers.
+ Import LanguageWf.Compilers.
+ Import UnderLetsProofs.Compilers.
+ Import AbstractInterpretationWf.Compilers.
+ Import AbstractInterpretationZRangeProofs.Compilers.
+ Import AbstractInterpretationWf.Compilers.partial.
+ Import invert_expr.
+
+ Local Notation related_bounded' b v1 v2
+ := (ZRange.type.base.option.is_bounded_by b v1 = true
+ /\ ZRange.type.base.option.is_bounded_by b v2 = true
+ /\ v1 = v2) (only parsing).
+ Local Notation related_bounded
+ := (@type.related_hetero3 _ _ _ _ (fun t b v1 v2 => related_bounded' b v1 v2)).
+
+ Module Import partial.
+ Import AbstractInterpretation.Compilers.partial.
+ Import UnderLets.Compilers.UnderLets.
+ Section with_type.
+ Context {base_type : Type}.
+ Local Notation type := (type base_type).
+ Let type_base (x : base_type) : type := type.base x.
+ Local Coercion type_base : base_type >-> type.
+ Context {ident : type -> Type}.
+ Local Notation Expr := (@expr.Expr base_type ident).
+ Context (abstract_domain' base_interp : base_type -> Type)
+ (ident_interp : forall t, ident t -> type.interp base_interp t)
+ (abstraction_relation' : forall t, abstract_domain' t -> base_interp t -> Prop)
+ (bottom' : forall A, abstract_domain' A)
+ (bottom'_related : forall t v, abstraction_relation' t (bottom' t) v)
+ (abstract_interp_ident : forall t, ident t -> type.interp abstract_domain' t)
+ (ident_interp_Proper : forall t (idc : ident t), type.related_hetero abstraction_relation' (abstract_interp_ident t idc) (ident_interp t idc))
+ (ident_interp_Proper' : forall t, Proper (eq ==> type.eqv) (ident_interp t))
+ (abstract_domain'_R : forall t, abstract_domain' t -> abstract_domain' t -> Prop)
+ (abstraction_relation'_Proper : forall t, Proper (abstract_domain'_R t ==> eq ==> Basics.impl) (abstraction_relation' t))
+ {abstract_domain'_R_transitive : forall t, Transitive (@abstract_domain'_R t)}
+ {abstract_domain'_R_symmetric : forall t, Symmetric (@abstract_domain'_R t)}
+ {bottom'_Proper : forall t, Proper (abstract_domain'_R t) (bottom' t)}
+ (abstract_domain'_R_of_related : forall t st v, @abstraction_relation' t st v -> @abstract_domain'_R t st st).
+ Local Notation abstract_domain := (@abstract_domain base_type abstract_domain').
+ Definition abstraction_relation {t} : abstract_domain t -> type.interp base_interp t -> Prop
+ := type.related_hetero (@abstraction_relation').
+ Local Notation bottom := (@bottom base_type abstract_domain' (@bottom')).
+ Local Notation bottom_for_each_lhs_of_arrow := (@bottom_for_each_lhs_of_arrow base_type abstract_domain' (@bottom')).
+ Local Notation abstract_domain_R := (@abstract_domain_R base_type abstract_domain' abstract_domain'_R).
+ Local Notation var := (type.interp base_interp).
+ Local Notation expr := (@expr.expr base_type ident).
+ Local Notation UnderLets := (@UnderLets base_type ident).
+ Local Notation value := (@value base_type ident var abstract_domain').
+ Local Notation value_with_lets := (@value_with_lets base_type ident var abstract_domain').
+ Local Notation state_of_value := (@state_of_value base_type ident var abstract_domain' bottom').
+ Context (annotate : forall (is_let_bound : bool) t, abstract_domain' t -> @expr var t -> @UnderLets var (@expr var t))
+ (interp_ident : forall t, ident t -> value_with_lets t)
+ (ident_extract : forall t, ident t -> abstract_domain t)
+ (interp_annotate
+ : forall is_let_bound t st e
+ (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e)),
+ expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate is_let_bound t st e))
+ = expr.interp (@ident_interp) e)
+ (ident_extract_Proper : forall t, Proper (eq ==> abstract_domain_R) (ident_extract t)).
+ Local Notation eta_expand_with_bound' := (@eta_expand_with_bound' base_type ident _ abstract_domain' annotate bottom').
+ Local Notation eval_with_bound' := (@partial.eval_with_bound' base_type ident _ abstract_domain' annotate bottom' interp_ident).
+ Local Notation extract' := (@extract' base_type ident abstract_domain' bottom' ident_extract).
+ Local Notation extract_gen := (@extract_gen base_type ident abstract_domain' bottom' ident_extract).
+ Local Notation reify := (@reify base_type ident _ abstract_domain' annotate bottom').
+ Local Notation reflect := (@reflect base_type ident _ abstract_domain' annotate bottom').
+ Local Notation interp := (@interp base_type ident var abstract_domain' annotate bottom' interp_ident).
+ Local Notation bottomify := (@bottomify base_type ident _ abstract_domain' bottom').
+
+ Lemma bottom_related t v : @abstraction_relation t bottom v.
+ Proof using bottom'_related. cbv [abstraction_relation]; induction t; cbn; cbv [respectful_hetero]; eauto. Qed.
+
+ Local Hint Resolve (@bottom_related) : core typeclass_instances.
+
+ Lemma bottom_for_each_lhs_of_arrow_related t v : type.and_for_each_lhs_of_arrow (@abstraction_relation) (@bottom_for_each_lhs_of_arrow t) v.
+ Proof using bottom'_related. induction t; cbn; eauto using bottom_related. Qed.
+
+ Local Notation bottom_Proper := (@bottom_Proper base_type abstract_domain' bottom' abstract_domain'_R bottom'_Proper).
+ Local Notation bottom_for_each_lhs_of_arrow_Proper := (@bottom_for_each_lhs_of_arrow_Proper base_type abstract_domain' bottom' abstract_domain'_R bottom'_Proper).
+
+ Local Hint Resolve (@bottom_Proper) (@bottom_for_each_lhs_of_arrow_Proper) : core typeclass_instances.
+
+ Fixpoint related_bounded_value {t} : abstract_domain t -> value t -> type.interp base_interp t -> Prop
+ := match t return abstract_domain t -> value t -> type.interp base_interp t -> Prop with
+ | type.base t
+ => fun st '(e_st, e) v
+ => abstract_domain'_R t st e_st
+ /\ expr.interp ident_interp e = v
+ /\ abstraction_relation' t st v
+ | type.arrow s d
+ => fun st e v
+ => Proper type.eqv v
+ /\ forall st_s e_s v_s,
+ let st_s := match s with
+ | type.base _ => st_s
+ | type.arrow _ _ => bottom
+ end in
+ @related_bounded_value s st_s e_s v_s
+ -> @related_bounded_value d (st st_s) (UnderLets.interp ident_interp (e e_s)) (v v_s)
+ end.
+ Definition related_bounded_value_with_lets {t} : abstract_domain t -> value_with_lets t -> type.interp base_interp t -> Prop
+ := fun st e v => related_bounded_value st (UnderLets.interp ident_interp e) v.
+
+ Definition related_of_related_bounded_value {t} st e v
+ : @related_bounded_value t st e v -> v == v.
+ Proof using Type. destruct t; [ reflexivity | intros [? ?]; assumption ]. Qed.
+
+ Lemma abstract_domain'_R_refl_of_rel_l t x y (H : @abstract_domain'_R t x y)
+ : @abstract_domain'_R t x x.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_l; eassumption. Qed.
+
+ Lemma abstract_domain'_R_refl_of_rel_r t x y (H : @abstract_domain'_R t x y)
+ : @abstract_domain'_R t y y.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_r; eassumption. Qed.
+
+ Local Hint Immediate abstract_domain'_R_refl_of_rel_l abstract_domain'_R_refl_of_rel_r.
+
+ Local Instance abstract_domain_R_Symmetric {t} : Symmetric (@abstract_domain_R t) := _ : Symmetric (type.related _).
+ Local Instance abstract_domain_R_Transitive {t} : Transitive (@abstract_domain_R t) := _ : Transitive (type.related _).
+
+ Lemma abstract_domain_R_refl_of_rel_l t x y (H : @abstract_domain_R t x y)
+ : @abstract_domain_R t x x.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_l; eassumption. Qed.
+
+ Lemma abstract_domain_R_refl_of_rel_r t x y (H : @abstract_domain_R t x y)
+ : @abstract_domain_R t y y.
+ Proof using abstract_domain'_R_symmetric abstract_domain'_R_transitive. eapply PER_valid_r; eassumption. Qed.
+
+ Local Hint Immediate abstract_domain_R_refl_of_rel_l abstract_domain_R_refl_of_rel_r.
+
+ Lemma related_bottom_for_each_lhs_of_arrow {t} v
+ : type.and_for_each_lhs_of_arrow (@abstraction_relation) (@bottom_for_each_lhs_of_arrow t) v.
+ Proof using bottom'_related. induction t; cbn; eauto. Qed.
+
+ Local Hint Immediate related_bottom_for_each_lhs_of_arrow.
+
+ Fixpoint fill_in_bottom_for_arrows {t} : abstract_domain t -> abstract_domain t
+ := match t with
+ | type.base t => fun x => x
+ | type.arrow s d
+ => fun f x => let x := match s with
+ | type.base _ => x
+ | type.arrow _ _ => bottom
+ end in
+ @fill_in_bottom_for_arrows d (f x)
+ end.
+
+ Lemma abstract_domain_R_bottom_fill_arrows {t}
+ : abstract_domain_R (@bottom t) (fill_in_bottom_for_arrows (@bottom t)).
+ Proof using bottom'_Proper.
+ cbv [abstract_domain_R]; induction t as [t|s IHs d IHd]; cbn [fill_in_bottom_for_arrows bottom type.related];
+ cbv [respectful Proper] in *; auto.
+ Qed.
+
+ Lemma fill_in_bottom_for_arrows_bottom_related {t} v
+ : abstraction_relation (fill_in_bottom_for_arrows (@bottom t)) v.
+ Proof using bottom'_related.
+ cbv [abstraction_relation]; induction t; cbn; cbv [respectful_hetero]; eauto.
+ Qed.
+
+ Hint Resolve fill_in_bottom_for_arrows_bottom_related.
+
+ Local Instance fill_in_bottom_for_arrows_Proper {t} : Proper (abstract_domain_R ==> abstract_domain_R) (@fill_in_bottom_for_arrows t).
+ Proof using bottom'_Proper.
+ pose proof (@bottom_Proper).
+ cbv [Proper respectful abstract_domain_R] in *; induction t; cbn in *; cbv [respectful] in *;
+ intros; break_innermost_match; eauto.
+ Qed.
+
+ Local Instance bottom_eqv_Proper_refl {t} : Proper type.eqv (@bottom t).
+ Proof using Type. cbv [Proper]; induction t; cbn in *; cbv [respectful] in *; eauto. Qed.
+
+ Lemma bottom_eqv_refl {t} : @bottom t == @bottom t.
+ Proof using Type. apply bottom_eqv_Proper_refl. Qed.
+ Local Hint Resolve bottom_eqv_refl.
+
+ Local Instance fill_in_bottom_for_arrows_Proper_eqv {t} : Proper (type.eqv ==> type.eqv) (@fill_in_bottom_for_arrows t).
+ Proof using Type.
+ cbv [Proper respectful] in *; induction t; cbn in *; cbv [respectful] in *;
+ intros; break_innermost_match; cbn in *; cbv [respectful] in *; eauto.
+ Qed.
+
+ Lemma state_of_value_related_fill {t} v (HP : Proper abstract_domain_R (@state_of_value t v))
+ : abstract_domain_R (@state_of_value t v) (fill_in_bottom_for_arrows (@state_of_value t v)).
+ Proof using bottom'_Proper. destruct t; [ assumption | apply abstract_domain_R_bottom_fill_arrows ]. Qed.
+
+ Lemma eqv_bottom_fill_bottom {t}
+ : @bottom t == fill_in_bottom_for_arrows bottom.
+ Proof using Type. induction t; cbn; [ reflexivity | ]; cbv [respectful]; auto. Qed.
+
+ Lemma eqv_fill_bottom_idempotent {t} v1 v2
+ : v1 == v2 -> fill_in_bottom_for_arrows (fill_in_bottom_for_arrows v1) == @fill_in_bottom_for_arrows t v2.
+ Proof using Type. induction t; cbn; cbv [respectful]; break_innermost_match; auto. Qed.
+
+ Lemma abstract_domain_R_fill_bottom_idempotent {t} v1 v2
+ : abstract_domain_R v1 v2
+ -> abstract_domain_R (fill_in_bottom_for_arrows (fill_in_bottom_for_arrows v1))
+ (@fill_in_bottom_for_arrows t v2).
+ Proof using bottom'_Proper.
+ pose proof (@bottom_Proper) as Hb.
+ induction t as [|s IHs d IHd]; cbn; cbv [respectful Proper abstract_domain_R] in *; break_innermost_match; auto.
+ Qed.
+
+ Lemma app_curried_state_of_value_fill {t} v x y
+ (H : type.and_for_each_lhs_of_arrow (@type.eqv) x y)
+ : type.app_curried (@state_of_value t v) x = type.app_curried (fill_in_bottom_for_arrows (@state_of_value t v)) y.
+ Proof using Type.
+ destruct t; [ reflexivity | cbv [state_of_value] ].
+ apply type.app_curried_Proper; [ apply eqv_bottom_fill_bottom | assumption ].
+ Qed.
+
+ Lemma first_order_app_curried_fill_in_bottom_for_arrows_eq {t} f xs
+ (Ht : type.is_not_higher_order t = true)
+ : type.app_curried (t:=t) f xs = type.app_curried (fill_in_bottom_for_arrows f) xs.
+ Proof using Type.
+ clear -Ht.
+ induction t as [| [|s' d'] IHs d IHd]; cbn in *; try discriminate; auto.
+ Qed.
+
+ Lemma first_order_abstraction_relation_fill_in_bottom_for_arrows_iff
+ {t} f v
+ (Ht : type.is_not_higher_order t = true)
+ : @abstraction_relation t f v
+ <-> @abstraction_relation t (fill_in_bottom_for_arrows f) v.
+ Proof using Type.
+ clear -Ht; cbv [abstraction_relation].
+ split; induction t as [| [|s' d'] IHs d IHd];
+ cbn in *; cbv [respectful_hetero]; try discriminate; auto.
+ Qed.
+
+ Lemma related_state_of_value_of_related_bounded_value {t} st e v
+ : @related_bounded_value t st e v -> abstract_domain_R match t with
+ | type.base _ => st
+ | type.arrow _ _ => bottom
+ end (state_of_value e).
+ Proof using bottom'_Proper. intro H; destruct t; cbn in *; [ destruct e; apply H | repeat intro; refine bottom_Proper ]. Qed.
+
+ Lemma related_state_of_value_of_related_bounded_value2 {t} st e v (st' := match t with
+ | type.base _ => st
+ | type.arrow _ _ => bottom
+ end)
+ : @related_bounded_value t st' e v -> abstract_domain_R st' (state_of_value e).
+ Proof using bottom'_Proper. intro H; destruct t; cbn in *; [ destruct e; apply H | repeat intro; refine bottom_Proper ]. Qed.
+
+ Lemma related_bounded_value_Proper {t} st1 st2 (Hst : abstract_domain_R (fill_in_bottom_for_arrows st1) (fill_in_bottom_for_arrows st2))
+ a a1 a2
+ (Ha' : type.eqv a1 a2)
+ : @related_bounded_value t st1 a a1 -> @related_bounded_value t st2 a a2.
+ Proof using abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper.
+ induction t as [t|s IHs d IHd]; cbn [related_bounded_value type.related] in *; cbv [respectful abstract_domain_R] in *.
+ all: cbn [type.andb_each_lhs_of_arrow] in *.
+ all: rewrite ?Bool.andb_true_iff in *.
+ all: destruct_head'_and.
+ { intros; break_innermost_match; subst;
+ destruct_head'_and; repeat apply conj; auto.
+ { etransitivity; (idtac + symmetry); eassumption. }
+ { eapply abstraction_relation'_Proper; (eassumption + reflexivity). } }
+ { intros [? Hrel].
+ split; [ repeat intro; etransitivity; (idtac + symmetry); eapply Ha'; (eassumption + (etransitivity; (idtac + symmetry); eassumption)) | ].
+ pose proof (@bottom_Proper s) as Hsbot.
+ intros ?? v_s; destruct s; intros Hx; cbn [type.related] in *;
+ cbn [fill_in_bottom_for_arrows] in *; cbv [respectful] in *.
+ { specialize_by_assumption; cbn in *.
+ eapply IHd; [ cbn in Hst |- *; eapply Hst | apply Ha'; reflexivity | eapply Hrel, Hx ]; cbv [respectful].
+ cbn [related_bounded_value] in *.
+ break_innermost_match_hyps; destruct_head'_and.
+ eauto. }
+ { eapply IHd; [ eapply Hst | apply Ha' | eapply Hrel, Hx ];
+ [ eexact Hsbot | refine (@related_of_related_bounded_value _ _ _ v_s _); eassumption | refine bottom ]. } }
+ Qed.
+
+ Lemma related_bounded_value_fill_bottom_iff {t} st1 st2 (Hst : abstract_domain_R st1 st2)
+ a a1 a2
+ (Ha' : type.eqv a1 a2)
+ : @related_bounded_value t st1 a a1 <-> @related_bounded_value t (fill_in_bottom_for_arrows st2) a a2.
+ Proof using abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper.
+ split; eapply related_bounded_value_Proper; try solve [ (idtac + symmetry); assumption ].
+ all: (idtac + symmetry); apply abstract_domain_R_fill_bottom_idempotent.
+ all: (idtac + symmetry); assumption.
+ Qed.
+
+ Lemma related_bounded_value_Proper1 {t}
+ : Proper (abstract_domain_R ==> eq ==> eq ==> Basics.impl) (@related_bounded_value t).
+ Proof using abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper.
+ repeat intro; subst; eapply related_bounded_value_Proper.
+ { eapply fill_in_bottom_for_arrows_Proper; eassumption. }
+ { eapply related_of_related_bounded_value; eassumption. }
+ { assumption. }
+ Qed.
+
+ Fixpoint interp_reify
+ is_let_bound {t} st e v b_in
+ (Hb : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
+ (H : related_bounded_value st e v) {struct t}
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
+ type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1
+ = type.app_curried v arg2)
+ /\ (forall arg1
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1)
+ (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
+ abstraction_relation'
+ _
+ (type.app_curried (fill_in_bottom_for_arrows st) b_in)
+ (type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1))
+ with interp_reflect
+ {t} st e v
+ (Hst_Proper : Proper abstract_domain_R st)
+ (H_val : expr.interp ident_interp e == v)
+ (Hst1 : abstraction_relation (fill_in_bottom_for_arrows st) (expr.interp ident_interp e))
+ {struct t}
+ : related_bounded_value
+ st
+ (@reflect t e st)
+ v.
+ Proof using interp_annotate abstraction_relation'_Proper bottom'_related bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ all: destruct t as [t|s d];
+ [ clear interp_reify interp_reflect
+ | pose proof (fun is_let_bound => interp_reify is_let_bound s) as interp_reify_s;
+ pose proof (fun is_let_bound => interp_reify is_let_bound d) as interp_reify_d;
+ pose proof (interp_reflect s) as interp_reflect_s;
+ pose proof (interp_reflect d) as interp_reflect_d;
+ clear interp_reify interp_reflect;
+ pose proof (@abstract_domain_R_bottom_fill_arrows s);
+ pose proof (@abstract_domain_R_bottom_fill_arrows d) ].
+ all: cbn [reify reflect] in *; fold (@reify) (@reflect) in *.
+ all: cbn [related_bounded_value type.related type.app_curried] in *.
+ all: cbn [UnderLets.interp expr.interp type.final_codomain type.andb_each_lhs_of_arrow type.is_base fst snd fill_in_bottom_for_arrows type.map_for_each_lhs_of_arrow type.for_each_lhs_of_arrow type.and_for_each_lhs_of_arrow partial.bottom_for_each_lhs_of_arrow partial.bottom] in *.
+ all: repeat first [ reflexivity
+ | progress eta_expand
+ | progress cbv [type.is_not_higher_order] in *
+ | progress cbn [UnderLets.interp expr.interp type.final_codomain fst snd] in *
+ | progress subst
+ | progress destruct_head'_and
+ | progress destruct_head'_prod
+ | progress destruct_head_hnf' and
+ | progress destruct_head_hnf' prod
+ | progress destruct_head_hnf' unit
+ | progress split_and
+ | progress subst
+ | discriminate
+ | rewrite UnderLets.interp_splice
+ | rewrite UnderLets.interp_to_expr
+ | rewrite interp_annotate
+ | match goal with
+ | [ H : context[andb _ _ = true] |- _ ] => rewrite !Bool.andb_true_iff in H
+ | [ |- context[andb _ _ = true] ] => rewrite !Bool.andb_true_iff
+ end
+ | match goal with
+ | [ H : fst ?x = _ |- _ ] => is_var x; destruct x
+ | [ H : Proper _ ?st |- ?R (?st _) (?st _) ] => apply H
+ | [ |- ?R (state_of_value _) (state_of_value _) ] => cbv [state_of_value] in *
+ end
+ | solve [ repeat intro; apply bottom_Proper
+ | auto; cbv [Proper respectful Basics.impl] in *; eauto ]
+ | progress (repeat apply conj; intros * )
+ | progress intros
+ | progress destruct_head'_or
+ | do_with_exactly_one_hyp ltac:(fun H => eapply H; clear H);
+ try assumption; auto; []
+ | match goal with
+ | [ |- Proper ?R _ ] => (eapply PER_valid_l + eapply PER_valid_r); eassumption
+ | [ |- @related_bounded_value ?t ?st1 (reflect _ ?st2) _ ]
+ => (tryif first [ constr_eq st1 st2 | has_evar st1 | has_evar st2 ]
+ then fail
+ else (eapply (@related_bounded_value_Proper1 t st2 st1);
+ try reflexivity))
+ | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry; assumption
+ end
+ | break_innermost_match_step
+ | do_with_exactly_one_hyp ltac:(fun H => eapply H; clear H);
+ try assumption; auto
+ | match goal with
+ | [ |- abstraction_relation (fill_in_bottom_for_arrows (?f (state_of_value ?e))) _ ]
+ => replace (state_of_value e) with (match s with
+ | type.base _ => state_of_value e
+ | type.arrow _ _ => bottom
+ end) by (destruct s; reflexivity)
+ end
+ | progress fold (@reify) (@reflect) (@type.interp) (@type.related) (@type.related_hetero) in *
+ | match goal with
+ | [ |- type.related _ (expr.interp _ (UnderLets.interp _ (reify _ _ _))) _ ]
+ => rewrite type.related_iff_app_curried
+ | [ |- type.related_hetero _ (@state_of_value ?t _) _ ]
+ => is_var t; destruct t; cbv [state_of_value]; [ cbn | apply bottom_related ]
+ end ].
+ Qed.
+
+ Lemma interp_reify_first_order
+ is_let_bound {t} st e v b_in
+ (Ht : type.is_not_higher_order t = true)
+ (Hb : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
+ (H : related_bounded_value st e v)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
+ type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1
+ = type.app_curried v arg2)
+ /\ (forall arg1
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1)
+ (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
+ abstraction_relation'
+ _
+ (type.app_curried st b_in)
+ (type.app_curried (expr.interp ident_interp (UnderLets.interp ident_interp (@reify is_let_bound t e b_in))) arg1)).
+ Proof using interp_annotate abstraction_relation'_Proper bottom'_related bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ rewrite first_order_app_curried_fill_in_bottom_for_arrows_eq by assumption.
+ apply interp_reify; assumption.
+ Qed.
+
+ Lemma interp_reflect_first_order
+ {t} st e v
+ (Ht : type.is_not_higher_order t = true)
+ (Hst_Proper : Proper abstract_domain_R st)
+ (H_val : expr.interp ident_interp e == v)
+ (Hst : abstraction_relation st (expr.interp ident_interp e))
+ : related_bounded_value
+ st
+ (@reflect t e st)
+ v.
+ Proof using interp_annotate abstraction_relation'_Proper bottom'_related bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ rewrite first_order_abstraction_relation_fill_in_bottom_for_arrows_iff in Hst by assumption.
+ apply interp_reflect; assumption.
+ Qed.
+
+ Lemma related_bounded_value_annotate_base {t}
+ v_st st v
+ : @related_bounded_value (type.base t) v_st st v
+ -> @related_bounded_value (type.base t) v_st (fst st, UnderLets.interp ident_interp (annotate true t (fst st) (snd st))) v.
+ Proof using interp_annotate abstraction_relation'_Proper.
+ clear -interp_annotate abstraction_relation'_Proper.
+ cbv [Proper respectful Basics.impl] in *.
+ cbn; break_innermost_match; cbn; intros.
+ destruct_head'_and; subst; repeat apply conj; auto.
+ rewrite interp_annotate by eauto; reflexivity.
+ Qed.
+
+ Lemma related_bounded_value_bottomify {t} v_st st v
+ : @related_bounded_value t v_st st v
+ -> @related_bounded_value t bottom (UnderLets.interp ident_interp (bottomify st)) v.
+ Proof using bottom'_Proper bottom'_related.
+ induction t; cbn in *;
+ repeat first [ progress subst
+ | progress cbv [respectful] in *
+ | progress cbn [UnderLets.interp] in *
+ | progress destruct_head'_and
+ | break_innermost_match_step
+ | progress intros
+ | apply conj
+ | reflexivity
+ | apply bottom'_Proper
+ | apply bottom'_related
+ | solve [ eauto ]
+ | rewrite UnderLets.interp_splice ].
+ Qed.
+
+ Context (interp_ident_Proper
+ : forall t idc,
+ related_bounded_value (ident_extract t idc) (UnderLets.interp ident_interp (interp_ident t idc)) (ident_interp t idc)).
+
+ Lemma interp_interp
+ G G' {t} (e_st e1 e2 e3 : expr t)
+ (HG : forall t v1 v2 v3, List.In (existT _ t (v1, v2, v3)) G
+ -> related_bounded_value_with_lets v1 v2 v3)
+ (HG' : forall t v1 v2, List.In (existT _ t (v1, v2)) G' -> v1 == v2)
+ (Hwf : expr.wf3 G e_st e1 e2)
+ (Hwf' : expr.wf G' e2 e3)
+ : related_bounded_value_with_lets
+ (extract' e_st)
+ (interp e1)
+ (expr.interp (@ident_interp) e2).
+ Proof using interp_ident_Proper interp_annotate abstraction_relation'_Proper ident_interp_Proper' abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper bottom'_related.
+ clear -ident_interp_Proper' interp_ident_Proper interp_annotate abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_Proper bottom'_related HG HG' Hwf Hwf'.
+ cbv [related_bounded_value_with_lets] in *;
+ revert dependent G'; induction Hwf; intros;
+ cbn [extract' interp expr.interp UnderLets.interp List.In related_bounded_value reify reflect] in *.
+ all: repeat first [ progress intros
+ | progress subst
+ | progress inversion_sigma
+ | progress inversion_prod
+ | progress destruct_head'_and
+ | progress destruct_head'_or
+ | progress destruct_head'_sig
+ | progress destruct_head'_sigT
+ | progress destruct_head'_prod
+ | progress eta_expand
+ | exfalso; assumption
+ | progress cbn [UnderLets.interp List.In eq_rect fst snd projT1 projT2] in *
+ | rewrite UnderLets.interp_splice
+ | rewrite interp_annotate
+ | solve [ cbv [Proper respectful Basics.impl] in *; eauto using related_of_related_bounded_value, related_bounded_value_bottomify ]
+ | progress specialize_by_assumption
+ | progress cbv [Let_In extract'] in *
+ | progress cbn [state_of_value] in *
+ | progress expr.invert_subst
+ | match goal with
+ | [ |- abstract_domain ?t ] => exact (@bottom t)
+ | [ H : expr.wf _ _ _ |- Proper type.eqv _ ]
+ => apply expr.wf_interp_Proper_gen1 in H;
+ [ cbv [Proper]; etransitivity; (idtac + symmetry); exact H | auto ]
+ | [ H : _ |- _ ]
+ => (tryif first [ constr_eq H HG | constr_eq H HG' ]
+ then fail
+ else (apply H; clear H))
+ | [ |- related_bounded_value _ (fst _, UnderLets.interp _ (annotate _ _ _ _)) _ ]
+ => apply related_bounded_value_annotate_base
+ | [ H : context[match ?v with None => _ | _ => _ end] |- _ ] => destruct v eqn:?
+ end
+ | apply conj
+ | match goal with
+ | [ H : _ = _ |- _ ] => rewrite H
+ end
+ | break_innermost_match_step
+ | progress expr.inversion_wf_one_constr
+ | match goal with
+ | [ H : _ |- _ ]
+ => (tryif first [ constr_eq H HG | constr_eq H HG' ]
+ then fail
+ else (eapply H; clear H;
+ lazymatch goal with
+ | [ |- expr.wf _ _ _ ]
+ => solve [ eassumption
+ | match goal with
+ | [ H : forall v1 v2, expr.wf _ _ _ |- expr.wf _ (?f ?x) _ ]
+ => apply (H x x)
+ end ]
+ | _ => idtac
+ end))
+ end ].
+ Qed.
+
+ Lemma interp_eval_with_bound'
+ {t} (e_st e1 e2 : expr t)
+ (Hwf : expr.wf3 nil e_st e1 e2)
+ (Hwf' : expr.wf nil e2 e2)
+ (Ht : type.is_not_higher_order t = true)
+ (st : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hst : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) st)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1),
+ type.app_curried (expr.interp ident_interp (eval_with_bound' e1 st)) arg1
+ = type.app_curried (expr.interp ident_interp e2) arg2)
+ /\ (forall arg1
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1)
+ (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
+ abstraction_relation'
+ _
+ (extract_gen e_st st)
+ (type.app_curried (expr.interp ident_interp (eval_with_bound' e1 st)) arg1)).
+ Proof using interp_annotate abstraction_relation'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric bottom'_related interp_ident_Proper bottom'_Proper ident_interp_Proper'.
+ cbv [extract_gen extract' eval_with_bound'].
+ split; intros; rewrite UnderLets.interp_to_expr, UnderLets.interp_splice.
+ all: eapply interp_reify_first_order; eauto.
+ all: eapply interp_interp; eauto; wf_t.
+ Qed.
+
+ Lemma interp_eta_expand_with_bound'
+ {t} (e1 e2 : expr t)
+ (Hwf : expr.wf nil e1 e2)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hb_in : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
+ type.app_curried (expr.interp ident_interp (eta_expand_with_bound' e1 b_in)) arg1 = type.app_curried (expr.interp ident_interp e2) arg2.
+ Proof using interp_annotate ident_interp_Proper' bottom'_related abstraction_relation'_Proper bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ cbv [eta_expand_with_bound'].
+ intros; rewrite UnderLets.interp_to_expr.
+ eapply interp_reify; eauto.
+ eapply interp_reflect; eauto using bottom_related.
+ eapply @expr.wf_interp_Proper_gen; auto using Hwf.
+ Qed.
+
+ Lemma interp_extract'_from_wf_gen G
+ (HG : forall t v1 v2, List.In (existT _ t (v1, v2)) G -> abstract_domain_R v1 v2)
+ {t} (e1 e2 : expr t)
+ (Hwf : expr.wf G e1 e2)
+ : abstract_domain_R (extract' e1) (extract' e2).
+ Proof using ident_extract_Proper bottom'_Proper.
+ cbv [abstract_domain_R] in *; induction Hwf; cbn [extract']; break_innermost_match.
+ all: repeat first [ progress subst
+ | progress inversion_sigma
+ | progress inversion_prod
+ | solve [ cbv [Proper respectful] in *; eauto ]
+ | progress cbv [respectful Let_In] in *
+ | progress cbn [type.related List.In eq_rect partial.bottom] in *
+ | progress intros
+ | progress destruct_head'_or
+ | apply bottom_Proper
+ | match goal with H : _ |- type.related _ _ _ => apply H; clear H end ].
+ Qed.
+
+ Lemma interp_extract'_from_wf {t} (e1 e2 : expr t)
+ (Hwf : expr.wf nil e1 e2)
+ : abstract_domain_R (extract' e1) (extract' e2).
+ Proof using ident_extract_Proper bottom'_Proper.
+ eapply interp_extract'_from_wf_gen; revgoals; wf_t.
+ Qed.
+ End with_type.
+
+ Module ident.
+ Import defaults.
+ Local Notation UnderLets := (@UnderLets base.type ident).
+ Section with_type.
+ Context (abstract_domain' : base.type -> Type).
+ Local Notation abstract_domain := (@abstract_domain base.type abstract_domain').
+ Context (annotate_ident : forall t, abstract_domain' t -> option (ident (t -> t)))
+ (bottom' : forall A, abstract_domain' A)
+ (abstract_interp_ident : forall t, ident t -> type.interp abstract_domain' t)
+ (update_literal_with_state : forall A : base.type.base, abstract_domain' A -> base.interp A -> base.interp A)
+ (extract_list_state : forall A, abstract_domain' (base.type.list A) -> option (list (abstract_domain' A)))
+ (is_annotated_for : forall t t', ident t -> abstract_domain' t' -> bool)
+ (is_annotation : forall t, ident t -> bool)
+ (abstraction_relation' : forall t, abstract_domain' t -> base.interp t -> Prop)
+ (abstract_domain'_R : forall t, abstract_domain' t -> abstract_domain' t -> Prop)
+ (abstraction_relation'_Proper : forall t, Proper (abstract_domain'_R t ==> eq ==> Basics.impl) (abstraction_relation' t))
+ (bottom'_related : forall t v, abstraction_relation' t (bottom' t) v)
+ {bottom'_Proper : forall t, Proper (abstract_domain'_R t) (bottom' t)}
+ (cast_outside_of_range : zrange -> Z -> Z)
+ {abstract_domain'_R_transitive : forall t, Transitive (@abstract_domain'_R t)}
+ {abstract_domain'_R_symmetric : forall t, Symmetric (@abstract_domain'_R t)}.
+ Local Notation abstraction_relation := (@abstraction_relation base.type abstract_domain' base.interp abstraction_relation').
+ Local Notation ident_interp := (@ident.gen_interp cast_outside_of_range).
+ Local Notation abstract_domain_R := (@abstract_domain_R base.type abstract_domain' abstract_domain'_R).
+ Local Notation fill_in_bottom_for_arrows := (@fill_in_bottom_for_arrows base.type abstract_domain' bottom').
+ Context {abstract_interp_ident_Proper : forall t, Proper (eq ==> @abstract_domain_R t) (abstract_interp_ident t)}
+ (interp_annotate_ident
+ : forall t st idc,
+ annotate_ident t st = Some idc
+ -> forall v, abstraction_relation' _ st v
+ -> ident_interp idc v = v)
+ (interp_update_literal_with_state
+ : forall (t : base.type.base) (st : abstract_domain' t) (v : base.interp t),
+ abstraction_relation' t st v -> update_literal_with_state t st v = v)
+ (abstract_interp_ident_Proper'
+ : forall t idc, type.related_hetero (@abstraction_relation') (abstract_interp_ident t idc) (ident_interp idc))
+ (extract_list_state_related
+ : forall t st ls v st' v',
+ extract_list_state t st = Some ls
+ -> abstraction_relation' _ st v
+ -> List.In (st', v') (List.combine ls v)
+ -> abstraction_relation' t st' v')
+ (extract_list_state_length_good
+ : forall t st ls v,
+ extract_list_state t st = Some ls
+ -> abstraction_relation' _ st v
+ -> length ls = length v).
+
+ Local Notation update_annotation := (@ident.update_annotation _ abstract_domain' annotate_ident is_annotated_for).
+ Local Notation annotate_with_ident := (@ident.annotate_with_ident _ abstract_domain' annotate_ident is_annotated_for).
+ Local Notation annotate_base := (@ident.annotate_base _ abstract_domain' annotate_ident update_literal_with_state is_annotated_for).
+ Local Notation annotate := (@ident.annotate _ abstract_domain' annotate_ident abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
+ Local Notation interp_ident := (@ident.interp_ident _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
+ Local Notation related_bounded_value := (@related_bounded_value base.type ident abstract_domain' base.interp (@ident_interp) abstraction_relation' bottom' abstract_domain'_R).
+ Local Notation reify := (@reify base.type ident _ abstract_domain' annotate bottom').
+ Local Notation reflect := (@reflect base.type ident _ abstract_domain' annotate bottom').
+
+ Lemma abstract_interp_ident_Proper'' t idc
+ : type.related_hetero (@abstraction_relation') (fill_in_bottom_for_arrows (abstract_interp_ident t idc)) (ident_interp idc).
+ Proof using abstract_interp_ident_Proper' bottom'_related.
+ generalize (abstract_interp_ident_Proper' t idc); clear -bottom'_related.
+ generalize (ident_interp idc), (abstract_interp_ident t idc); clear idc.
+ intros v st H.
+ induction t as [| [|s' d'] IHs d IHd]; cbn in *; cbv [respectful_hetero] in *;
+ auto.
+ intros; apply IHd, H; clear IHd H.
+ intros; apply bottom_related; assumption.
+ Qed.
+
+ Lemma interp_update_annotation t st e
+ (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
+ : expr.interp (@ident_interp) (@update_annotation t st e)
+ = expr.interp (@ident_interp) e.
+ Proof using interp_annotate_ident.
+ cbv [update_annotation];
+ repeat first [ reflexivity
+ | progress subst
+ | progress eliminate_hprop_eq
+ | progress cbn [expr.interp eq_rect] in *
+ | erewrite interp_annotate_ident by eassumption
+ | progress expr.invert_match
+ | progress type_beq_to_eq
+ | progress rewrite_type_transport_correct
+ | progress break_innermost_match_step ].
+ Qed.
+
+ Lemma interp_annotate_with_ident is_let_bound t st e
+ (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
+ : expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate_with_ident is_let_bound t st e))
+ = expr.interp (@ident_interp) e.
+ Proof using interp_annotate_ident.
+ cbv [annotate_with_ident]; break_innermost_match; cbn [expr.interp UnderLets.interp];
+ apply interp_update_annotation; assumption.
+ Qed.
+
+ Lemma interp_annotate_base is_let_bound (t : base.type.base) st e
+ (He : abstraction_relation' t st (expr.interp (t:=type.base (base.type.type_base t)) (@ident_interp) e))
+ : expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate_base is_let_bound t st e))
+ = expr.interp (@ident_interp) e.
+ Proof using interp_annotate_ident interp_update_literal_with_state.
+ cbv [annotate_base]; break_innermost_match; expr.invert_subst; cbv beta iota in *; subst.
+ { cbn [expr.interp UnderLets.interp ident.smart_Literal ident_interp] in *; eauto. }
+ { apply interp_annotate_with_ident; assumption. }
+ Qed.
+
+ Lemma interp_annotate is_let_bound (t : base.type) st e
+ (He : abstraction_relation' t st (expr.interp (t:=type.base t) (@ident_interp) e))
+ : expr.interp (@ident_interp) (UnderLets.interp (@ident_interp) (@annotate is_let_bound t st e))
+ = expr.interp (@ident_interp) e.
+ Proof using interp_update_literal_with_state interp_annotate_ident abstract_interp_ident_Proper' extract_list_state_related extract_list_state_length_good bottom'_related.
+ induction t; cbn [annotate]; auto using interp_annotate_base.
+ all: repeat first [ reflexivity
+ | progress subst
+ | progress inversion_option
+ | progress inversion_prod
+ | progress destruct_head'_ex
+ | progress destruct_head'_and
+ | progress break_innermost_match
+ | progress break_innermost_match_hyps
+ | progress expr.invert_subst
+ | progress cbn [fst snd UnderLets.interp expr.interp ident_interp Nat.add] in *
+ | rewrite !UnderLets.interp_splice
+ | rewrite !UnderLets.interp_splice_list
+ | rewrite !List.map_map
+ | rewrite expr.interp_reify_list
+ | rewrite nth_error_combine
+ | apply interp_annotate_with_ident; assumption
+ | progress fold (@base.interp) in *
+ | progress intros
+ | pose proof (@extract_list_state_length_good _ _ _ _ ltac:(eassumption) ltac:(eassumption)); clear extract_list_state_length_good
+ | match goal with
+ | [ H : context[expr.interp _ (reify_list _)] |- _ ] => rewrite expr.interp_reify_list in H
+ | [ H : abstraction_relation' (_ * _) _ (_, _) |- _ ]
+ => pose proof (abstract_interp_ident_Proper'' _ ident.fst _ _ H);
+ pose proof (abstract_interp_ident_Proper'' _ ident.snd _ _ H);
+ clear H
+ | [ H : context[_ = _] |- _ = _ ] => rewrite H by assumption
+ | [ |- List.map ?f (List.combine ?l1 ?l2) = List.map ?g ?l2 ]
+ => transitivity (List.map g (List.map (@snd _ _) (List.combine l1 l2)));
+ [ rewrite List.map_map; apply List.map_ext_in
+ | rewrite map_snd_combine, List.firstn_all2; [ reflexivity | ] ]
+ | [ Hls : extract_list_state ?t ?st = Some ?ls, He : abstraction_relation' _ ?st ?v |- abstraction_relation' _ _ _ ]
+ => apply (fun st' v' => extract_list_state_related t st ls v st' v' Hls He)
+ | [ H : context[List.nth_error (List.combine _ _) _] |- _ ] => rewrite nth_error_combine in H
+ | [ H : List.In _ (List.combine _ _) |- _ ] => apply List.In_nth_error in H
+ | [ |- List.In _ (List.combine _ _) ] => eapply nth_error_In
+ | [ H : ?x = Some _, H' : context[?x] |- _ ] => rewrite H in H'
+ | [ H : List.nth_error (List.map _ _) _ = Some _ |- _ ] => apply nth_error_map in H
+ | [ H : List.nth_error _ _ = None |- _ ] => rewrite List.nth_error_None in H
+ | [ H : context[length ?ls] |- _ ] => tryif is_var ls then fail else (progress autorewrite with distr_length in H)
+ | [ |- context[length ?ls] ] => tryif is_var ls then fail else (progress autorewrite with distr_length)
+ | [ H : List.nth_error ?ls ?n = Some _, H' : length ?ls <= ?n |- _ ]
+ => apply nth_error_value_length in H; exfalso; clear -H H'; lia
+ | [ H : List.nth_error ?l ?n = _, H' : List.nth_error ?l ?n' = _ |- _ ]
+ => unify n n'; rewrite H in H'
+ | [ Hls : extract_list_state ?t ?st = Some ?ls, He : abstraction_relation' _ ?st ?v |- _ ]
+ => pose proof (fun st' v' => extract_list_state_related t st ls v st' v' Hls He); clear extract_list_state_related
+ | [ IH : forall st e, _ -> expr.interp _ (UnderLets.interp _ (annotate _ _ _)) = _ |- List.map (fun x => expr.interp _ _) (List.combine _ _) = expr.interp _ _ ]
+ => erewrite List.map_ext_in;
+ [
+ | intros; eta_expand; rewrite IH; cbn [expr.interp ident_interp ident.smart_Literal]; [ reflexivity | ] ]
+ | [ H : abstraction_relation' _ ?st (List.map (expr.interp _) ?ls), H' : forall st' v', List.In _ (List.combine _ _) -> abstraction_relation' _ _ _, H'' : List.nth_error ?ls _ = Some ?e |- abstraction_relation' _ _ (expr.interp _ ?e) ]
+ => apply H'
+ | [ H : context[List.nth_error (List.seq _ _) _] |- _ ] => rewrite nth_error_seq in H
+ end
+ | apply Nat.eq_le_incl
+ | rewrite <- List.map_map with (f:=fst), map_fst_combine
+ | rewrite Lists.List.firstn_all2 by distr_length
+ | apply map_nth_default_seq
+ | match goal with
+ | [ H : context[expr.interp _ _ = expr.interp _ _] |- expr.interp _ _ = expr.interp _ _ ] => apply H; clear H
+ | [ H : forall st' v', List.In _ (List.combine _ _) -> abstraction_relation' _ _ _ |- abstraction_relation' _ _ _ ]
+ => apply H; clear H; cbv [List.nth_default]
+ | [ |- None = Some _ ] => exfalso; lia
+ end ].
+ Qed.
+
+ Lemma interp_ident_Proper_not_nth_default t idc
+ : related_bounded_value (abstract_interp_ident t idc) (UnderLets.interp (@ident_interp) (Base (reflect (expr.Ident idc) (abstract_interp_ident _ idc)))) (ident_interp idc).
+ Proof using abstract_interp_ident_Proper' abstraction_relation'_Proper bottom'_related extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state abstract_interp_ident_Proper bottom'_Proper abstract_domain'_R_transitive abstract_domain'_R_symmetric.
+ cbn [UnderLets.interp].
+ eapply interp_reflect;
+ try first [ apply ident.gen_interp_Proper
+ | apply abstract_interp_ident_Proper''
+ | eapply abstract_interp_ident_Proper; reflexivity
+ | apply interp_annotate ];
+ eauto.
+ Qed.
+
+ Lemma interp_ident_Proper_nth_default T (idc:=@ident.List_nth_default T)
+ : related_bounded_value (abstract_interp_ident _ idc) (UnderLets.interp (@ident_interp) (interp_ident idc)) (ident_interp idc).
+ Proof using abstract_interp_ident_Proper abstract_interp_ident_Proper' abstraction_relation'_Proper extract_list_state_length_good extract_list_state_related interp_annotate_ident interp_update_literal_with_state bottom'_related.
+ subst idc; cbn [interp_ident reify reflect fst snd UnderLets.interp ident_interp related_bounded_value abstract_domain value].
+ cbv [abstract_domain]; cbn [type.interp bottom_for_each_lhs_of_arrow state_of_value fst snd].
+ repeat first [ progress intros
+ | progress cbn [UnderLets.interp fst snd expr.interp ident_interp] in *
+ | progress destruct_head'_prod
+ | progress destruct_head'_and
+ | progress subst
+ | progress eta_expand
+ | rewrite UnderLets.interp_splice
+ | progress expr.invert_subst
+ | break_innermost_match_step
+ | progress cbn [type.interp base.interp base.base_interp] in *
+ | rewrite interp_annotate
+ | solve [ cbv [Proper respectful Basics.impl] in *; eauto ]
+ | split; [ apply (@abstract_interp_ident_Proper _ (@ident.List_nth_default T) _ eq_refl) | ]
+ | split; [ reflexivity | ]
+ | apply (@abstract_interp_ident_Proper'' _ (@ident.List_nth_default T))
+ | apply conj
+ | rewrite map_nth_default_always
+ | match goal with
+ | [ H : context[expr.interp _ (UnderLets.interp _ (annotate _ _ _))] |- _ ]
+ => rewrite interp_annotate in H
+ | [ H : context[expr.interp _ (reify_list _)] |- _ ]
+ => rewrite expr.interp_reify_list in H
+ | [ H : _ = reify_list _ |- _ ] => apply (f_equal (expr.interp (@ident_interp))) in H
+ | [ H : expr.interp _ ?x = _ |- context[expr.interp _ ?x] ] => rewrite H
+ | [ |- Proper _ _ ] => cbv [Proper type.related respectful]
+ end ].
+ Qed.
+
+ Lemma interp_ident_Proper t idc
+ : related_bounded_value (abstract_interp_ident t idc) (UnderLets.interp (@ident_interp) (interp_ident idc)) (ident_interp idc).
+ Proof.
+ pose idc as idc'.
+ destruct idc; first [ refine (@interp_ident_Proper_not_nth_default _ idc')
+ | refine (@interp_ident_Proper_nth_default _) ].
+ Qed.
+
+ Local Notation eval_with_bound := (@partial.ident.eval_with_bound _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
+ Local Notation eta_expand_with_bound := (@partial.ident.eta_expand_with_bound _ abstract_domain' annotate_ident bottom' abstract_interp_ident update_literal_with_state extract_list_state is_annotated_for).
+ Local Notation extract := (@ident.extract abstract_domain' bottom' abstract_interp_ident).
+
+ Lemma interp_eval_with_bound
+ {t} (e_st e1 e2 : expr t)
+ (Hwf : expr.wf3 nil e_st e1 e2)
+ (Hwf' : expr.wf nil e2 e2)
+ (Ht : type.is_not_higher_order t = true)
+ (st : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hst : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) st)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1),
+ type.app_curried (expr.interp (@ident_interp) (eval_with_bound e1 st)) arg1
+ = type.app_curried (expr.interp (@ident_interp) e2) arg2)
+ /\ (forall arg1
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) st arg1)
+ (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1),
+ abstraction_relation'
+ _
+ (extract e_st st)
+ (type.app_curried (expr.interp (@ident_interp) (eval_with_bound e1 st)) arg1)).
+ Proof. cbv [extract eval_with_bound]; apply @interp_eval_with_bound' with (abstract_domain'_R:=abstract_domain'_R); auto using interp_annotate, interp_ident_Proper, ident.gen_interp_Proper. Qed.
+
+ Lemma interp_eta_expand_with_bound
+ {t} (e1 e2 : expr t)
+ (Hwf : expr.wf nil e1 e2)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hb_in : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) b_in)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.and_for_each_lhs_of_arrow (@abstraction_relation) b_in arg1),
+ type.app_curried (expr.interp (@ident_interp) (eta_expand_with_bound e1 b_in)) arg1 = type.app_curried (expr.interp (@ident_interp) e2) arg2.
+ Proof. cbv [partial.ident.eta_expand_with_bound]; eapply interp_eta_expand_with_bound'; eauto using interp_annotate, ident.gen_interp_Proper. Qed.
+ End with_type.
+ End ident.
+
+ Lemma default_relax_zrange_good
+ : forall r r' z, is_tighter_than_bool z r = true
+ -> default_relax_zrange r = Some r'
+ -> is_tighter_than_bool z r' = true.
+ Proof.
+ cbv [default_relax_zrange]; intros; inversion_option; subst; assumption.
+ Qed.
+
+ Section specialized.
+ Import defaults.
+ Local Notation abstract_domain' := ZRange.type.base.option.interp (only parsing).
+ Local Notation abstract_domain := (@partial.abstract_domain base.type abstract_domain').
+ Local Notation abstract_domain'_R t := (@eq (abstract_domain' t)) (only parsing).
+ Local Notation abstract_domain_R := (@abstract_domain_R base.type abstract_domain' (fun t => abstract_domain'_R t)).
+ Local Notation fill_in_bottom_for_arrows := (@fill_in_bottom_for_arrows base.type abstract_domain' bottom').
+
+ Definition abstraction_relation' {t} : abstract_domain' t -> base.interp t -> Prop
+ := fun st v => @ZRange.type.base.option.is_bounded_by t st v = true.
+
+ Lemma bottom'_bottom {t} : forall v, abstraction_relation' (bottom' t) v.
+ Proof using Type.
+ cbv [abstraction_relation' bottom']; induction t; cbn; intros; break_innermost_match; cbn; try reflexivity.
+ rewrite Bool.andb_true_iff; split; auto.
+ Qed.
+
+ Lemma invert_is_annotation t idc
+ : is_annotation t idc = true
+ -> (exists r, existT _ t idc = existT _ (base.type.Z -> base.type.Z)%etype (ident.Z_cast r))
+ \/ (exists r, existT _ t idc = existT _ (base.type.Z * base.type.Z -> base.type.Z * base.type.Z)%etype (ident.Z_cast2 r)).
+ Proof using Type. destruct idc; cbn [is_annotation]; try discriminate; eauto. Qed.
+
+ Lemma abstract_interp_ident_related cast_outside_of_range {t} (idc : ident t)
+ : type.related_hetero (@abstraction_relation') (@abstract_interp_ident t idc) (@ident.gen_interp cast_outside_of_range _ idc).
+ Proof using Type. apply ZRange.ident.option.interp_related. Qed.
+
+ Lemma interp_update_literal_with_state {t : base.type.base} st v
+ : @abstraction_relation' t st v -> @update_literal_with_state t st v = v.
+ Proof using Type.
+ cbv [abstraction_relation' update_literal_with_state update_Z_literal_with_state ZRange.type.base.option.is_bounded_by];
+ break_innermost_match; try congruence; reflexivity.
+ Qed.
+
+ Lemma extract_list_state_related {t} st v ls
+ : @abstraction_relation' _ st v
+ -> @extract_list_state t st = Some ls
+ -> length ls = length v
+ /\ forall st' (v' : base.interp t), List.In (st', v') (List.combine ls v) -> @abstraction_relation' t st' v'.
+ Proof using Type.
+ cbv [abstraction_relation' extract_list_state]; cbn [ZRange.type.base.option.is_bounded_by].
+ intros; subst.
+ split.
+ { eapply FoldBool.fold_andb_map_length; eassumption. }
+ { intros *.
+ revert dependent v; induction ls, v; cbn; try tauto.
+ rewrite Bool.andb_true_iff.
+ intros; destruct_head'_and; destruct_head'_or; inversion_prod; subst; eauto. }
+ Qed.
+
+ Lemma Extract_FromFlat_ToFlat' {t} (e : Expr t) (Hwf : Wf e) b_in1 b_in2
+ (Hb : type.and_for_each_lhs_of_arrow (fun t => type.eqv) b_in1 b_in2)
+ : partial.Extract (GeneralizeVar.FromFlat (GeneralizeVar.ToFlat e)) b_in1
+ = partial.Extract e b_in2.
+ Proof using Type.
+ cbv [partial.Extract partial.ident.extract partial.extract_gen].
+ revert b_in1 b_in2 Hb.
+ rewrite <- (@type.related_iff_app_curried base.type ZRange.type.base.option.interp (fun _ => eq)).
+ apply interp_extract'_from_wf; auto with wf typeclass_instances.
+ apply GeneralizeVar.wf_from_flat_to_flat, Hwf.
+ Qed.
+
+ Lemma Extract_FromFlat_ToFlat {t} (e : Expr t) (Hwf : Wf e) b_in
+ (Hb : Proper (type.and_for_each_lhs_of_arrow (fun t => type.eqv)) b_in)
+ : partial.Extract (GeneralizeVar.FromFlat (GeneralizeVar.ToFlat e)) b_in
+ = partial.Extract e b_in.
+ Proof using Type. apply Extract_FromFlat_ToFlat'; assumption. Qed.
+
+ Section with_relax.
+ Context {relax_zrange : zrange -> option zrange}
+ (Hrelax : forall r r' z, is_tighter_than_bool z r = true
+ -> relax_zrange r = Some r'
+ -> is_tighter_than_bool z r' = true).
+
+ Local Lemma Hrelax' r r' z
+ : is_bounded_by_bool z r = true
+ -> relax_zrange (ZRange.normalize r) = Some r'
+ -> is_bounded_by_bool z r' = true.
+ Proof using Hrelax.
+ intros H Hr.
+ eapply ZRange.is_bounded_by_of_is_tighter_than; [ eapply Hrelax; [ | eassumption ] | eassumption ].
+ eapply ZRange.is_tighter_than_bool_normalize_of_goodb, ZRange.goodb_of_is_bounded_by_bool; eassumption.
+ Qed.
+
+ Lemma interp_annotate_ident {t} st idc
+ (Hst : @annotate_ident relax_zrange t st = Some idc)
+ : forall v, abstraction_relation' st v
+ -> (forall cast_outside_of_range,
+ ident.gen_interp cast_outside_of_range idc v = v).
+ Proof using Hrelax.
+ repeat first [ progress cbv [annotate_ident Option.bind annotation_of_state option_map abstraction_relation' ZRange.type.base.option.is_bounded_by ZRange.type.base.is_bounded_by] in *
+ | reflexivity
+ | progress inversion_option
+ | progress subst
+ | break_innermost_match_hyps_step
+ | break_innermost_match_step
+ | progress cbn [ident.gen_interp base.interp base.base_interp] in *
+ | progress intros
+ | progress Bool.split_andb
+ | rewrite ident.cast_in_bounds by assumption
+ | match goal with
+ | [ H : is_bounded_by_bool ?v ?r = true, H' : relax_zrange (ZRange.normalize ?r) = Some ?r' |- _ ]
+ => unique assert (is_bounded_by_bool v r' = true) by (eapply Hrelax'; eassumption)
+ end ].
+ Qed.
+
+ Lemma interp_annotate_ident_Proper {t} st1 st2 (Hst : abstract_domain'_R t st1 st2)
+ : @annotate_ident relax_zrange t st1 = @annotate_ident relax_zrange t st2.
+ Proof using Type. congruence. Qed.
+
+ Local Hint Resolve interp_annotate_ident interp_update_literal_with_state abstract_interp_ident_related.
+
+ Lemma interp_eval_with_bound
+ cast_outside_of_range
+ {t} (e_st e1 e2 : expr t)
+ (Hwf : expr.wf3 nil e_st e1 e2)
+ (Hwf' : expr.wf nil e2 e2)
+ (Ht : type.is_not_higher_order t = true)
+ (st : type.for_each_lhs_of_arrow abstract_domain t)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
+ type.app_curried (expr.interp (@ident.gen_interp cast_outside_of_range) (eval_with_bound relax_zrange e1 st)) arg1
+ = type.app_curried (expr.interp (@ident.gen_interp cast_outside_of_range) e2) arg2)
+ /\ (forall arg1
+ (Harg11 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg1)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
+ abstraction_relation'
+ (extract e_st st)
+ (type.app_curried (expr.interp (@ident.gen_interp cast_outside_of_range) (eval_with_bound relax_zrange e1 st)) arg1)).
+ Proof using Hrelax.
+ cbv [eval_with_bound]; split;
+ [ intros arg1 arg2 Harg12 Harg1
+ | intros arg1 Harg11 Harg1 ].
+ all: eapply Compilers.type.andb_bool_impl_and_for_each_lhs_of_arrow in Harg1; [ | apply ZRange.type.option.is_bounded_by_impl_related_hetero ].
+ all: eapply ident.interp_eval_with_bound with (abstraction_relation':=@abstraction_relation') (abstract_domain'_R:=fun t => abstract_domain'_R t); eauto using bottom'_bottom with typeclass_instances.
+ all: intros; eapply extract_list_state_related; eassumption.
+ Qed.
+
+ Lemma interp_eta_expand_with_bound
+ {t} (e1 e2 : expr t)
+ (Hwf : expr.wf nil e1 e2)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ type.app_curried (interp (partial.eta_expand_with_bound relax_zrange e1 b_in)) arg1 = type.app_curried (interp e2) arg2.
+ Proof using Hrelax.
+ cbv [partial.eta_expand_with_bound]; intros arg1 arg2 Harg12 Harg1.
+ eapply Compilers.type.andb_bool_impl_and_for_each_lhs_of_arrow in Harg1.
+ { apply ident.interp_eta_expand_with_bound with (abstraction_relation':=@abstraction_relation') (abstract_domain'_R:=fun t => abstract_domain'_R t); eauto using bottom'_bottom with typeclass_instances.
+ all: intros; eapply extract_list_state_related; eassumption. }
+ { apply ZRange.type.option.is_bounded_by_impl_related_hetero. }
+ Qed.
+
+ Lemma Interp_EvalWithBound
+ cast_outside_of_range
+ {t} (e : Expr t)
+ (Hwf : expr.Wf3 e)
+ (Hwf' : expr.Wf e)
+ (Ht : type.is_not_higher_order t = true)
+ (st : type.for_each_lhs_of_arrow abstract_domain t)
+ (Hst : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R)) st)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
+ type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (EvalWithBound relax_zrange e st)) arg1
+ = type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) e) arg2)
+ /\ (forall arg1
+ (Harg11 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg1)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) st arg1 = true),
+ abstraction_relation'
+ (Extract e st)
+ (type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (EvalWithBound relax_zrange e st)) arg1)).
+ Proof using Hrelax. cbv [Extract EvalWithBound]; apply interp_eval_with_bound; auto. Qed.
+
+ Lemma Interp_EtaExpandWithBound
+ {t} (E : Expr t)
+ (Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ type.app_curried (Interp (partial.EtaExpandWithBound relax_zrange E b_in)) arg1 = type.app_curried (Interp E) arg2.
+ Proof using Hrelax. cbv [partial.EtaExpandWithBound]; apply interp_eta_expand_with_bound; eauto with typeclass_instances. Qed.
+ End with_relax.
+
+ Lemma strip_ranges_is_looser t b v
+ : @ZRange.type.option.is_bounded_by t b v = true
+ -> ZRange.type.option.is_bounded_by (ZRange.type.option.strip_ranges b) v = true.
+ Proof using Type.
+ induction t as [t|s IHs d IHd]; cbn in *; [ | tauto ].
+ induction t; cbn in *; break_innermost_match; cbn in *; rewrite ?Bool.andb_true_iff; try solve [ intuition ]; [].
+ repeat match goal with ls : list _ |- _ => revert ls end.
+ intros ls1 ls2; revert ls2.
+ induction ls1, ls2; cbn in *; rewrite ?Bool.andb_true_iff; solve [ intuition ].
+ Qed.
+
+ Lemma andb_strip_ranges_Proper t (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t) arg1
+ : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true ->
+ type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by)
+ (type.map_for_each_lhs_of_arrow (@ZRange.type.option.strip_ranges) b_in) arg1 = true.
+ Proof using Type.
+ induction t as [t|s IHs d IHd]; cbn [type.andb_bool_for_each_lhs_of_arrow type.map_for_each_lhs_of_arrow type.for_each_lhs_of_arrow] in *;
+ rewrite ?Bool.andb_true_iff; [ tauto | ].
+ destruct_head'_prod; cbn [fst snd]; intros [? ?].
+ erewrite IHd by eauto.
+ split; [ | reflexivity ].
+ apply strip_ranges_is_looser; assumption.
+ Qed.
+
+ Lemma strip_ranges_Proper t
+ : Proper (abstract_domain_R ==> abstract_domain_R) (@ZRange.type.option.strip_ranges t).
+ Proof using Type.
+ induction t as [t|s IHs d IHd]; cbn in *.
+ all: cbv [Proper respectful abstract_domain_R] in *; intros; subst; eauto.
+ Qed.
+
+ Lemma and_strip_ranges_Proper' t
+ : Proper (type.and_for_each_lhs_of_arrow (@abstract_domain_R) ==> type.and_for_each_lhs_of_arrow (@abstract_domain_R))
+ (type.map_for_each_lhs_of_arrow (@ZRange.type.option.strip_ranges) (t:=t)).
+ Proof using Type.
+ induction t as [t|s IHs d IHd]; cbn [type.and_for_each_lhs_of_arrow type.map_for_each_lhs_of_arrow abstract_domain_R type.for_each_lhs_of_arrow] in *;
+ cbv [Proper respectful] in *; [ tauto | ].
+ intros; destruct_head'_prod; cbn [fst snd] in *; destruct_head'_and.
+ split; [ | solve [ auto ] ].
+ apply strip_ranges_Proper; auto.
+ Qed.
+
+ Lemma Interp_EtaExpandWithListInfoFromBound
+ {t} (E : Expr t)
+ (Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow abstract_domain t)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ type.app_curried (Interp (partial.EtaExpandWithListInfoFromBound E b_in)) arg1 = type.app_curried (Interp E) arg2.
+ Proof using Type.
+ cbv [partial.EtaExpandWithListInfoFromBound].
+ intros; apply Interp_EtaExpandWithBound; trivial.
+ { exact default_relax_zrange_good. }
+ { apply andb_strip_ranges_Proper; assumption. }
+ Qed.
+ End specialized.
+ End partial.
+ Import defaults.
+
+ Module Import CheckCasts.
+ Module ident.
+ Lemma interp_eqv_without_casts t idc
+ cast_outside_of_range1 cast_outside_of_range2
+ (Hc : partial.is_annotation t idc = false)
+ : ident.gen_interp cast_outside_of_range1 idc
+ == ident.gen_interp cast_outside_of_range2 idc.
+ Proof.
+ generalize (@ident.gen_interp_Proper cast_outside_of_range1 t idc idc eq_refl);
+ destruct idc; try exact id; cbn in Hc; discriminate.
+ Qed.
+ End ident.
+
+ Lemma interp_eqv_without_casts
+ cast_outside_of_range1 cast_outside_of_range2
+ G {t} e1 e2 e3
+ (HG : forall t v1 v2 v3, List.In (existT _ t (v1, v2, v3)) G -> v2 == v3)
+ (Hwf : expr.wf3 G e1 e2 e3)
+ (Hc : @CheckCasts.get_casts t e1 = nil)
+ : expr.interp (@ident.gen_interp cast_outside_of_range1) e2
+ == expr.interp (@ident.gen_interp cast_outside_of_range2) e3.
+ Proof.
+ induction Hwf;
+ repeat first [ progress cbn [CheckCasts.get_casts] in *
+ | discriminate
+ | match goal with
+ | [ H : (_ ++ _)%list = nil |- _ ] => apply List.app_eq_nil in H
+ end
+ | progress destruct_head'_and
+ | progress break_innermost_match_hyps
+ | progress interp_safe_t
+ | solve [ eauto using ident.interp_eqv_without_casts ] ].
+ Qed.
+
+ Lemma Interp_WithoutUnsupportedCasts {t} (e : Expr t)
+ (Hc : CheckCasts.GetUnsupportedCasts e = nil)
+ (Hwf : expr.Wf3 e)
+ cast_outside_of_range1 cast_outside_of_range2
+ : expr.Interp (@ident.gen_interp cast_outside_of_range1) e
+ == expr.Interp (@ident.gen_interp cast_outside_of_range2) e.
+ Proof. eapply interp_eqv_without_casts with (G:=nil); wf_safe_t. Qed.
+ End CheckCasts.
+
+ Lemma Interp_PartialEvaluateWithBounds
+ cast_outside_of_range
+ relax_zrange
+ (Hrelax : forall r r' z, is_tighter_than_bool z r = true
+ -> relax_zrange r = Some r'
+ -> is_tighter_than_bool z r' = true)
+ {t} (E : Expr t)
+ (Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (PartialEvaluateWithBounds relax_zrange E b_in)) arg1
+ = type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) E) arg2.
+ Proof.
+ cbv [PartialEvaluateWithBounds].
+ intros arg1 arg2 Harg12 Harg1.
+ assert (arg1_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg1)
+ by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
+ assert (arg2_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg2)
+ by (hnf; etransitivity; [ symmetry; eassumption | eassumption ]).
+ rewrite <- (@GeneralizeVar.Interp_gen1_GeneralizeVar _ _ _ _ _ E) by auto with wf.
+ eapply Interp_EvalWithBound; eauto with wf typeclass_instances.
+ Qed.
+
+ Lemma Interp_PartialEvaluateWithBounds_bounded
+ cast_outside_of_range
+ relax_zrange
+ (Hrelax : forall r r' z, is_tighter_than_bool z r = true
+ -> relax_zrange r = Some r'
+ -> is_tighter_than_bool z r' = true)
+ {t} (E : Expr t)
+ (Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ : forall arg1
+ (Harg11 : Proper (type.and_for_each_lhs_of_arrow (@type.eqv)) arg1)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ ZRange.type.base.option.is_bounded_by
+ (partial.Extract E b_in)
+ (type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) (PartialEvaluateWithBounds relax_zrange E b_in)) arg1)
+ = true.
+ Proof.
+ cbv [PartialEvaluateWithBounds].
+ intros arg1 Harg11 Harg1.
+ rewrite <- Extract_FromFlat_ToFlat by auto with wf typeclass_instances.
+ eapply Interp_EvalWithBound; eauto with wf typeclass_instances.
+ Qed.
+
+ Lemma Interp_PartialEvaluateWithListInfoFromBounds
+ {t} (E : Expr t)
+ (Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ : forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ type.app_curried (Interp (PartialEvaluateWithListInfoFromBounds E b_in)) arg1 = type.app_curried (Interp E) arg2.
+ Proof.
+ cbv [PartialEvaluateWithListInfoFromBounds]; intros arg1 arg2 Harg12 Harg1.
+ assert (arg1_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg1)
+ by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
+ assert (arg2_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg2)
+ by (hnf; etransitivity; [ symmetry; eassumption | eassumption ]).
+ rewrite <- (@GeneralizeVar.Interp_GeneralizeVar _ _ E) by auto.
+ apply Interp_EtaExpandWithListInfoFromBound; auto with wf.
+ Qed.
+
+ Theorem CheckedPartialEvaluateWithBounds_Correct
+ (relax_zrange : zrange -> option zrange)
+ (Hrelax : forall r r' z, is_tighter_than_bool z r = true
+ -> relax_zrange r = Some r'
+ -> is_tighter_than_bool z r' = true)
+ {t} (E : Expr t)
+ (Hwf : Wf E)
+ (Ht : type.is_not_higher_order t = true)
+ (b_in : type.for_each_lhs_of_arrow ZRange.type.option.interp t)
+ (b_out : ZRange.type.base.option.interp (type.final_codomain t))
+ rv (Hrv : CheckedPartialEvaluateWithBounds relax_zrange E b_in b_out = inl rv)
+ : (forall arg1 arg2
+ (Harg12 : type.and_for_each_lhs_of_arrow (@type.eqv) arg1 arg2)
+ (Harg1 : type.andb_bool_for_each_lhs_of_arrow (@ZRange.type.option.is_bounded_by) b_in arg1 = true),
+ ZRange.type.base.option.is_bounded_by b_out (type.app_curried (Interp rv) arg1) = true
+ /\ forall cast_outside_of_range, type.app_curried (expr.Interp (@ident.gen_interp cast_outside_of_range) rv) arg1
+ = type.app_curried (Interp E) arg2)
+ /\ Wf rv.
+ Proof.
+ cbv [CheckedPartialEvaluateWithBounds Let_In] in *;
+ break_innermost_match_hyps; inversion_sum; subst.
+ let H := lazymatch goal with H : _ = nil |- _ => H end in
+ pose proof (@Interp_WithoutUnsupportedCasts _ _ H ltac:(solve [ auto with wf ])) as H'; clear H;
+ assert (forall cast_outside_of_range1 cast_outside_of_range2,
+ expr.Interp (@ident.gen_interp cast_outside_of_range1) E == expr.Interp (@ident.gen_interp cast_outside_of_range2) E)
+ by (intros c1 c2; specialize (H' c1 c2);
+ rewrite !@GeneralizeVar.Interp_gen1_FromFlat_ToFlat in H' by eauto with wf typeclass_instances;
+ assumption).
+ clear H'.
+ split.
+ { intros arg1 arg2 Harg12 Harg1.
+ assert (arg1_Proper : Proper (type.and_for_each_lhs_of_arrow (@type.related base.type base.interp (fun _ => eq))) arg1)
+ by (hnf; etransitivity; [ eassumption | symmetry; eassumption ]).
+ split.
+ all: repeat first [ rewrite !@GeneralizeVar.Interp_gen1_FromFlat_ToFlat by eauto with wf typeclass_instances
+ | rewrite <- Extract_FromFlat_ToFlat by auto with typeclass_instances; apply Interp_PartialEvaluateWithBounds_bounded; auto
+ | rewrite Extract_FromFlat_ToFlat by auto with wf typeclass_instances
+ | progress intros
+ | eapply ZRange.type.base.option.is_tighter_than_is_bounded_by; [ eassumption | ]
+ | solve [ eauto with wf typeclass_instances ]
+ | erewrite !Interp_PartialEvaluateWithBounds
+ | apply type.app_curried_Proper
+ | apply expr.Wf_Interp_Proper_gen
+ | progress intros ]. }
+ { auto with wf typeclass_instances. }
+ Qed.
+End Compilers.