aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/polynomialsolver.cpp
blob: 4ff9bda5a7f9946a8b130e90794ded38090d6a7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>
#include <algorithm>

using namespace std;

namespace Eigen {
namespace internal {
template<int Size>
struct increment_if_fixed_size
{
  enum {
    ret = (Size == Dynamic) ? Dynamic : Size+1
  };
};
}
}

template<typename PolynomialType>
PolynomialType polyder(const PolynomialType& p)
{
  typedef typename PolynomialType::Scalar Scalar;
  PolynomialType res(p.size());
  for(Index i=1; i<p.size(); ++i)
    res[i-1] = p[i]*Scalar(i);
  res[p.size()-1] = 0.;
  return res;
}

template<int Deg, typename POLYNOMIAL, typename SOLVER>
bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
{
  typedef typename POLYNOMIAL::Scalar Scalar;
  typedef typename POLYNOMIAL::RealScalar RealScalar;

  typedef typename SOLVER::RootsType    RootsType;
  typedef Matrix<RealScalar,Deg,1>      EvalRootsType;

  const Index deg = pols.size()-1;

  // Test template constructor from coefficient vector
  SOLVER solve_constr (pols);

  psolve.compute( pols );
  const RootsType& roots( psolve.roots() );
  EvalRootsType evr( deg );
  POLYNOMIAL pols_der = polyder(pols);
  EvalRootsType der( deg );
  for( int i=0; i<roots.size(); ++i ){
    evr[i] = std::abs( poly_eval( pols, roots[i] ) );
    der[i] = numext::maxi(RealScalar(1.), std::abs( poly_eval( pols_der, roots[i] ) ));
  }

  // we need to divide by the magnitude of the derivative because
  // with a high derivative is very small error in the value of the root
  // yiels a very large error in the polynomial evaluation.
  bool evalToZero = (evr.cwiseQuotient(der)).isZero( test_precision<Scalar>() );
  if( !evalToZero )
  {
    cerr << "WRONG root: " << endl;
    cerr << "Polynomial: " << pols.transpose() << endl;
    cerr << "Roots found: " << roots.transpose() << endl;
    cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl;
    cerr << endl;
  }

  std::vector<RealScalar> rootModuli( roots.size() );
  Map< EvalRootsType > aux( &rootModuli[0], roots.size() );
  aux = roots.array().abs();
  std::sort( rootModuli.begin(), rootModuli.end() );
  bool distinctModuli=true;
  for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i )
  {
    if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){
      distinctModuli = false; }
  }
  VERIFY( evalToZero || !distinctModuli );

  return distinctModuli;
}







template<int Deg, typename POLYNOMIAL>
void evalSolver( const POLYNOMIAL& pols )
{
  typedef typename POLYNOMIAL::Scalar Scalar;

  typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType;

  PolynomialSolverType psolve;
  aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve );
}




template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS >
void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots )
{
  using std::sqrt;
  typedef typename POLYNOMIAL::Scalar Scalar;
  typedef typename POLYNOMIAL::RealScalar RealScalar;

  typedef PolynomialSolver<Scalar, Deg >              PolynomialSolverType;

  PolynomialSolverType psolve;
  if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) )
  {
    //It is supposed that
    // 1) the roots found are correct
    // 2) the roots have distinct moduli

    //Test realRoots
    std::vector< RealScalar > calc_realRoots;
    psolve.realRoots( calc_realRoots,  test_precision<RealScalar>());
    VERIFY_IS_EQUAL( calc_realRoots.size() , (size_t)real_roots.size() );

    const RealScalar psPrec = sqrt( test_precision<RealScalar>() );

    for( size_t i=0; i<calc_realRoots.size(); ++i )
    {
      bool found = false;
      for( size_t j=0; j<calc_realRoots.size()&& !found; ++j )
      {
        if( internal::isApprox( calc_realRoots[i], real_roots[j], psPrec ) ){
          found = true; }
      }
      VERIFY( found );
    }

    //Test greatestRoot
    VERIFY( internal::isApprox( roots.array().abs().maxCoeff(),
          abs( psolve.greatestRoot() ), psPrec ) );

    //Test smallestRoot
    VERIFY( internal::isApprox( roots.array().abs().minCoeff(),
          abs( psolve.smallestRoot() ), psPrec ) );

    bool hasRealRoot;
    //Test absGreatestRealRoot
    RealScalar r = psolve.absGreatestRealRoot( hasRealRoot );
    VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
    if( hasRealRoot ){
      VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) );  }

    //Test absSmallestRealRoot
    r = psolve.absSmallestRealRoot( hasRealRoot );
    VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
    if( hasRealRoot ){
      VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); }

    //Test greatestRealRoot
    r = psolve.greatestRealRoot( hasRealRoot );
    VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
    if( hasRealRoot ){
      VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); }

    //Test smallestRealRoot
    r = psolve.smallestRealRoot( hasRealRoot );
    VERIFY( hasRealRoot == (real_roots.size() > 0 ) );
    if( hasRealRoot ){
    VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); }
  }
}


template<typename _Scalar, int _Deg>
void polynomialsolver(int deg)
{
  typedef typename NumTraits<_Scalar>::Real RealScalar;
  typedef internal::increment_if_fixed_size<_Deg>     Dim;
  typedef Matrix<_Scalar,Dim::ret,1>                  PolynomialType;
  typedef Matrix<_Scalar,_Deg,1>                      EvalRootsType;
  typedef Matrix<RealScalar,_Deg,1>                   RealRootsType;

  cout << "Standard cases" << endl;
  PolynomialType pols = PolynomialType::Random(deg+1);
  evalSolver<_Deg,PolynomialType>( pols );

  cout << "Hard cases" << endl;
  _Scalar multipleRoot = internal::random<_Scalar>();
  EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot);
  roots_to_monicPolynomial( allRoots, pols );
  evalSolver<_Deg,PolynomialType>( pols );

  cout << "Test sugar" << endl;
  RealRootsType realRoots = RealRootsType::Random(deg);
  roots_to_monicPolynomial( realRoots, pols );
  evalSolverSugarFunction<_Deg>(
      pols,
      realRoots.template cast <std::complex<RealScalar> >().eval(),
      realRoots );
}

EIGEN_DECLARE_TEST(polynomialsolver)
{
  for(int i = 0; i < g_repeat; i++)
  {
    CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) );
    CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) );
    CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) );
    CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) );
    CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) );
    CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) );
    CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) );
    CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) );

    CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>(
            internal::random<int>(9,13)
            )) );
    CALL_SUBTEST_10((polynomialsolver<double,Dynamic>(
            internal::random<int>(9,13)
            )) );
    CALL_SUBTEST_11((polynomialsolver<float,Dynamic>(1)) );
    CALL_SUBTEST_12((polynomialsolver<std::complex<double>,Dynamic>(internal::random<int>(2,13))) );
  }
}