aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/matrix_power.cpp
blob: db356450a5629dd4f401b4b8451763eabe927441 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "matrix_functions.h"

template<typename T>
void test2dRotation(double tol)
{
  Matrix<T,2,2> A, B, C;
  T angle, c, s;

  A << 0, 1, -1, 0;
  MatrixPower<Matrix<T,2,2> > Apow(A);

  for (int i=0; i<=20; ++i) {
    angle = pow(10, (i-10) / 5.);
    c = std::cos(angle);
    s = std::sin(angle);
    B << c, s, -s, c;

    C = Apow(std::ldexp(angle,1) / M_PI);
    std::cout << "test2dRotation: i = " << i << "   error powerm = " << relerr(C,B) << '\n';
    VERIFY(C.isApprox(B, static_cast<T>(tol)));
  }
}

template<typename T>
void test2dHyperbolicRotation(double tol)
{
  Matrix<std::complex<T>,2,2> A, B, C;
  T angle, ch = std::cosh(1);
  std::complex<T> ish(0, std::sinh(1));

  A << ch, ish, -ish, ch;
  MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);

  for (int i=0; i<=20; ++i) {
    angle = std::ldexp(static_cast<T>(i-10), -1);
    ch = std::cosh(angle);
    ish = std::complex<T>(0, std::sinh(angle));
    B << ch, ish, -ish, ch;

    C = Apow(angle);
    std::cout << "test2dHyperbolicRotation: i = " << i << "   error powerm = " << relerr(C,B) << '\n';
    VERIFY(C.isApprox(B, static_cast<T>(tol)));
  }
}

template<typename MatrixType>
void testExponentLaws(const MatrixType& m, double tol)
{
  typedef typename MatrixType::RealScalar RealScalar;
  MatrixType m1, m2, m3, m4, m5;
  RealScalar x, y;

  for (int i=0; i<g_repeat; ++i) {
    generateTestMatrix<MatrixType>::run(m1, m.rows());
    MatrixPower<MatrixType> mpow(m1);

    x = internal::random<RealScalar>();
    y = internal::random<RealScalar>();
    m2 = mpow(x);
    m3 = mpow(y);

    m4 = mpow(x+y);
    m5.noalias() = m2 * m3;
    VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));

    m4 = mpow(x*y);
    m5 = m2.pow(y);
    VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));

    m4 = (std::abs(x) * m1).pow(y);
    m5 = std::pow(std::abs(x), y) * m3;
    VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
  }
}

template<typename MatrixType, typename VectorType>
void testProduct(const MatrixType& m, const VectorType& v, double tol)
{
  typedef typename MatrixType::RealScalar RealScalar;
  MatrixType m1;
  VectorType v1, v2, v3;
  RealScalar p;

  for (int i=0; i<g_repeat; ++i) {
    generateTestMatrix<MatrixType>::run(m1, m.rows());
    MatrixPower<MatrixType> mpow(m1);

    v1 = VectorType::Random(v.rows(), v.cols());
    p = internal::random<RealScalar>();

    v2.noalias() = mpow(p) * v1;
    v3.noalias() = mpow(p).eval() * v1;
    std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3) << '\n';
    VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
  }
}

template<typename MatrixType, typename VectorType>
void testMatrixVector(const MatrixType& m, const VectorType& v, double tol)
{
  testExponentLaws(m,tol);
  testProduct(m,v,tol);
}

void test_matrix_power()
{
  typedef Matrix<double,3,3,RowMajor>         Matrix3dRowMajor;
  typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
  typedef Matrix<long double,Dynamic,1>       VectorXe;

  CALL_SUBTEST_2(test2dRotation<double>(1e-13));
  CALL_SUBTEST_1(test2dRotation<float>(2e-5));  // was 1e-5, relaxed for clang 2.8 / linux / x86-64
  CALL_SUBTEST_9(test2dRotation<long double>(1e-13)); 
  CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
  CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
  CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));

  CALL_SUBTEST_2(testMatrixVector(Matrix2d(),         Vector2d(),    1e-13));
  CALL_SUBTEST_7(testMatrixVector(Matrix3dRowMajor(), MatrixXd(3,5), 1e-13));
  CALL_SUBTEST_3(testMatrixVector(Matrix4cd(),        Vector4cd(),   1e-13));
  CALL_SUBTEST_4(testMatrixVector(MatrixXd(8,8),      VectorXd(8),   1e-13));
  CALL_SUBTEST_1(testMatrixVector(Matrix2f(),         Vector2f(),    1e-4));
  CALL_SUBTEST_5(testMatrixVector(Matrix3cf(),        Vector3cf(),   1e-4));
  CALL_SUBTEST_8(testMatrixVector(Matrix4f(),         Vector4f(),    1e-4));
  CALL_SUBTEST_6(testMatrixVector(MatrixXf(8,8),      VectorXf(8),   1e-4));
  CALL_SUBTEST_9(testMatrixVector(MatrixXe(7,7),      VectorXe(7),   1e-13));
}