aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/matrix_power.cpp
blob: 80f65ebe439f31aa9611753e5bccedf13183109b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "matrix_functions.h"

template <typename T>
void test2dRotation(double tol)
{
  Matrix<T,2,2> A, B, C;
  T angle, c, s;

  A << 0, 1, -1, 0;
  for (int i = 0; i <= 20; i++) {
    angle = pow(10, (i-10) / 5.);
    c = std::cos(angle);
    s = std::sin(angle);
    B << c, s, -s, c;

    C = A.pow(std::ldexp(angle, 1) / M_PI);
    std::cout << "test2dRotation: i = " << i << "   error powerm = " << relerr(C, B) << '\n';
    VERIFY(C.isApprox(B, T(tol)));
  }
}

template <typename T>
void test2dHyperbolicRotation(double tol)
{
  Matrix<std::complex<T>,2,2> A, B, C;
  T angle, ch = std::cosh(1);
  std::complex<T> ish(0, std::sinh(1));

  A << ch, ish, -ish, ch;
  for (int i = 0; i <= 20; i++) {
    angle = std::ldexp(T(i-10), -1);
    ch = std::cosh(angle);
    ish = std::complex<T>(0, std::sinh(angle));
    B << ch, ish, -ish, ch;

    C = A.pow(angle);
    std::cout << "test2dHyperbolicRotation: i = " << i << "   error powerm = " << relerr(C, B) << '\n';
    VERIFY(C.isApprox(B, T(tol)));
  }
}

template <typename MatrixType>
void testIntPowers(const MatrixType& m, double tol)
{
  typedef typename MatrixType::RealScalar RealScalar;
  const MatrixType m1 = MatrixType::Random(m.rows(), m.cols());
  const MatrixType identity = MatrixType::Identity(m.rows(), m.cols());
  const PartialPivLU<MatrixType> solver(m1);
  MatrixType m2, m3, m4;

  m3 = m1.pow(0);
  m4 = m1.pow(0.);
  std::cout << "testIntPower: i = 0   error powerm = " << relerr(identity, m3) << "   " << relerr(identity, m4) << '\n';
  VERIFY(identity == m3 && identity == m4);

  m3 = m1.pow(1);
  m4 = m1.pow(1.);
  std::cout << "testIntPower: i = 1   error powerm = " << relerr(m1, m3) << "   " << relerr(m1, m4) << '\n';
  VERIFY(m1 == m3 && m1 == m4);

  m2 = m1 * m1;
  m3 = m1.pow(2);
  m4 = m1.pow(2.);
  std::cout << "testIntPower: i = 2   error powerm = " << relerr(m2, m3) << "   " << relerr(m2, m4) << '\n';
  VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol)));

  for (int i = 3; i <= 20; i++) {
    m2 *= m1;
    m3 = m1.pow(i);
    m4 = m1.pow(RealScalar(i));
    std::cout << "testIntPower: i = " << i << "   error powerm = " << relerr(m2, m3) << "   " << relerr (m2, m4) << '\n';
    VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol)));
  }

  m2 = solver.inverse();
  m3 = m1.pow(-1);
  m4 = m1.pow(-1.);
  std::cout << "testIntPower: i = -1   error powerm = " << relerr(m2, m3) << "   " << relerr (m2, m4) << '\n';
  VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol)));

  for (int i = -2; i >= -20; i--) {
    m2 = solver.solve(m2);
    m3 = m1.pow(i);
    m4 = m1.pow(RealScalar(i));
    std::cout << "testIntPower: i = " << i << "   error powerm = " << relerr(m2, m3) << "   " << relerr (m2, m4) << '\n';
    VERIFY(m2.isApprox(m3, RealScalar(tol)) && m2.isApprox(m4, RealScalar(tol)));
  }
}

template <typename MatrixType>
void testExponentLaws(const MatrixType& m, double tol)
{
  typedef typename MatrixType::RealScalar RealScalar;
  MatrixType m1, m2, m3, m4, m5;
  RealScalar x, y;

  for (int i = 0; i < g_repeat; i++) {
    generateTestMatrix<MatrixType>::run(m1, m.rows());
    x = internal::random<RealScalar>();
    y = internal::random<RealScalar>();
    m2 = m1.pow(x);
    m3 = m1.pow(y);

    m4 = m1.pow(x + y);
    m5 = m2 * m3;
    std::cout << "testExponentLaws: error powerm = " << relerr(m4, m5);
    VERIFY(m4.isApprox(m5, RealScalar(tol)));

    if (!NumTraits<typename MatrixType::Scalar>::IsComplex) {
      m4 = m1.pow(x * y);
      m5 = m2.pow(y);
      std::cout << "   " << relerr(m4, m5);
      VERIFY(m4.isApprox(m5, RealScalar(tol)));
    }

    m4 = (std::abs(x) * m1).pow(y);
    m5 = std::pow(std::abs(x), y) * m3;
    std::cout << "   " << relerr(m4, m5) << '\n';
    VERIFY(m4.isApprox(m5, RealScalar(tol)));
  }
}

template <typename MatrixType, typename VectorType>
void testMatrixVectorProduct(const MatrixType& m, const VectorType& v, double tol)
{
  typedef typename MatrixType::RealScalar RealScalar;
  MatrixType m1;
  VectorType v1, v2, v3;
  RealScalar pReal;
  signed char pInt;

  for (int i = 0; i < g_repeat; i++) {
    generateTestMatrix<MatrixType>::run(m1, m.rows());
    v1 = VectorType::Random(v.rows(), v.cols());
    pReal = internal::random<RealScalar>();
    pInt = rand();
    pInt >>= 2;

    v2 = m1.pow(pReal).eval() * v1;
    v3 = m1.pow(pReal) * v1;
    std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3);
    VERIFY(v2.isApprox(v3, RealScalar(tol)));

    v2 = m1.pow(pInt).eval() * v1;
    v3 = m1.pow(pInt) * v1;
    std::cout << "   " << relerr(v2, v3) << '\n';
    VERIFY(v2.isApprox(v3, RealScalar(tol)) || v2 == v3);
  }
}

void test_matrix_power()
{
  CALL_SUBTEST_2(test2dRotation<double>(1e-13));
  CALL_SUBTEST_1(test2dRotation<float>(2e-5));  // was 1e-5, relaxed for clang 2.8 / linux / x86-64
  CALL_SUBTEST_9(test2dRotation<long double>(1e-13)); 
  CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
  CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
  CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));

  CALL_SUBTEST_2(testIntPowers(Matrix2d(), 1e-13));
  CALL_SUBTEST_7(testIntPowers(Matrix<double,3,3,RowMajor>(), 1e-13));
  CALL_SUBTEST_3(testIntPowers(Matrix4cd(), 1e-13));
  CALL_SUBTEST_4(testIntPowers(MatrixXd(8,8), 1e-13));
  CALL_SUBTEST_1(testIntPowers(Matrix2f(), 1e-4));
  CALL_SUBTEST_5(testIntPowers(Matrix3cf(), 1e-4));
  CALL_SUBTEST_8(testIntPowers(Matrix4f(), 1e-4));
  CALL_SUBTEST_6(testIntPowers(MatrixXf(8,8), 1e-4));

  CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13));
  CALL_SUBTEST_7(testExponentLaws(Matrix<double,3,3,RowMajor>(), 1e-13));
  CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13));
  CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 1e-13));
  CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4));
  CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4));
  CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4));
  CALL_SUBTEST_6(testExponentLaws(MatrixXf(8,8), 1e-4));

  CALL_SUBTEST_2(testMatrixVectorProduct(Matrix2d(), Vector2d(), 1e-13));
  CALL_SUBTEST_7(testMatrixVectorProduct(Matrix<double,3,3,RowMajor>(), Vector3d(), 1e-13));
  CALL_SUBTEST_3(testMatrixVectorProduct(Matrix4cd(), Vector4cd(), 1e-13));
  CALL_SUBTEST_4(testMatrixVectorProduct(MatrixXd(8,8), MatrixXd(8,2), 1e-13));
  CALL_SUBTEST_1(testMatrixVectorProduct(Matrix2f(), Vector2f(), 1e-4));
  CALL_SUBTEST_5(testMatrixVectorProduct(Matrix3cf(), Vector3cf(), 1e-4));
  CALL_SUBTEST_8(testMatrixVectorProduct(Matrix4f(), Vector4f(), 1e-4));
  CALL_SUBTEST_6(testMatrixVectorProduct(MatrixXf(8,8), VectorXf(8), 1e-4));
  CALL_SUBTEST_10(testMatrixVectorProduct(Matrix<long double,Dynamic,Dynamic>(7,7), Matrix<long double,7,9>(), 1e-13));
}