aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/matrix_function.cpp
blob: 04167abfb18dc2cfa94e811a0fd6254a99988456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>

// Variant of VERIFY_IS_APPROX which uses absolute error instead of
// relative error.
#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))

template<typename Type1, typename Type2>
inline bool test_isApprox_abs(const Type1& a, const Type2& b)
{
  return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
}


// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
template<typename MatrixType>
MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  MatrixType diag = MatrixType::Zero(size, size);
  for (Index i = 0; i < size; ++i) {
    diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2)))
      + internal::random<Scalar>() * Scalar(RealScalar(0.01));
  }
  MatrixType A = MatrixType::Random(size, size);
  HouseholderQR<MatrixType> QRofA(A);
  return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
}

template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct randomMatrixWithImagEivals
{
  // Returns a matrix with eigenvalues clustered around 0 and +/- i.
  static MatrixType run(const typename MatrixType::Index size);
};

// Partial specialization for real matrices
template<typename MatrixType>
struct randomMatrixWithImagEivals<MatrixType, 0>
{
  static MatrixType run(const typename MatrixType::Index size)
  {
    typedef typename MatrixType::Index Index;
    typedef typename MatrixType::Scalar Scalar;
    MatrixType diag = MatrixType::Zero(size, size);
    Index i = 0;
    while (i < size) {
      Index randomInt = internal::random<Index>(-1, 1);
      if (randomInt == 0 || i == size-1) {
        diag(i, i) = internal::random<Scalar>() * Scalar(0.01);
        ++i;
      } else {
        Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01);
        diag(i, i+1) = alpha;
        diag(i+1, i) = -alpha;
        i += 2;
      }
    }
    MatrixType A = MatrixType::Random(size, size);
    HouseholderQR<MatrixType> QRofA(A);
    return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
  }
};

// Partial specialization for complex matrices
template<typename MatrixType>
struct randomMatrixWithImagEivals<MatrixType, 1>
{
  static MatrixType run(const typename MatrixType::Index size)
  {
    typedef typename MatrixType::Index Index;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    const Scalar imagUnit(0, 1);
    MatrixType diag = MatrixType::Zero(size, size);
    for (Index i = 0; i < size; ++i) {
      diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit
        + internal::random<Scalar>() * Scalar(RealScalar(0.01));
    }
    MatrixType A = MatrixType::Random(size, size);
    HouseholderQR<MatrixType> QRofA(A);
    return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
  }
};


template<typename MatrixType>
void testMatrixExponential(const MatrixType& A)
{
  typedef typename internal::traits<MatrixType>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef std::complex<RealScalar> ComplexScalar;

  VERIFY_IS_APPROX(A.exp(), A.matrixFunction(StdStemFunctions<ComplexScalar>::exp));
}

template<typename MatrixType>
void testHyperbolicFunctions(const MatrixType& A)
{
  // Need to use absolute error because of possible cancellation when
  // adding/subtracting expA and expmA.
  VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2);
  VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2);
}

template<typename MatrixType>
void testGonioFunctions(const MatrixType& A)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef std::complex<RealScalar> ComplexScalar;
  typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, 
                 MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;

  ComplexScalar imagUnit(0,1);
  ComplexScalar two(2,0);

  ComplexMatrix Ac = A.template cast<ComplexScalar>();
  
  ComplexMatrix exp_iA = (imagUnit * Ac).exp();
  ComplexMatrix exp_miA = (-imagUnit * Ac).exp();
  
  ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>();
  VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
  
  ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>();
  VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
}

template<typename MatrixType>
void testMatrix(const MatrixType& A)
{
  testMatrixExponential(A);
  testHyperbolicFunctions(A);
  testGonioFunctions(A);
}

template<typename MatrixType>
void testMatrixType(const MatrixType& m)
{
  // Matrices with clustered eigenvalue lead to different code paths
  // in MatrixFunction.h and are thus useful for testing.
  typedef typename MatrixType::Index Index;

  const Index size = m.rows();
  for (int i = 0; i < g_repeat; i++) {
    testMatrix(MatrixType::Random(size, size).eval());
    testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
    testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size));
  }
}

void test_matrix_function()
{
  CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
  CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
  CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
  CALL_SUBTEST_4(testMatrixType(Matrix2d()));
  CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
  CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
  CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
}