aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_uint128.cpp
blob: 46fceaa19cb5e1f8e261d52f2cdabd463aba332c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

#include <Eigen/CXX11/Tensor>


#if EIGEN_COMP_MSVC || !defined(__SIZEOF_INT128__)
#define EIGEN_NO_INT128
#else
typedef __uint128_t uint128_t;
#endif

// Only run the test on compilers that support 128bit integers natively
#ifndef EIGEN_NO_INT128

using Eigen::internal::TensorUInt128;
using Eigen::internal::static_val;

void VERIFY_EQUAL(TensorUInt128<uint64_t, uint64_t> actual, uint128_t expected) {
  bool matchl = actual.lower() == static_cast<uint64_t>(expected);
  bool matchh = actual.upper() == static_cast<uint64_t>(expected >> 64);
  if (!matchl || !matchh) {
    const char* testname = g_test_stack.back().c_str();
    std::cerr << "Test " << testname << " failed in " << __FILE__
              << " (" << __LINE__ << ")"
              << std::endl;
    abort();
  }
}


void test_add() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i + j;
          uint128_t expected = a + b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_sub() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i - j;
          uint128_t expected = a - b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_mul() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i * j;
          uint128_t expected = a * b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_div() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i / j;
          uint128_t expected = a / b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_misc1() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
    TensorUInt128<static_val<0>, uint64_t> i(0, i2);
    uint128_t a = static_cast<uint128_t>(i2);
    for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
      TensorUInt128<static_val<0>, uint64_t> j(0, j2);
      uint128_t b = static_cast<uint128_t>(j2);
      uint64_t actual = (i * j).upper();
      uint64_t expected = (a * b) >> 64;
      VERIFY_IS_EQUAL(actual, expected);
    }
  }
}

void test_misc2() {
  int64_t incr = internal::random<int64_t>(1, 100);
  for (int64_t log_div = 0; log_div < 63; ++log_div) {
    for (int64_t divider = 1; divider <= 1000000 * incr; divider += incr) {
      uint64_t expected = (static_cast<uint128_t>(1) << (64+log_div)) / static_cast<uint128_t>(divider) - (static_cast<uint128_t>(1) << 64) + 1;
      uint64_t shift = 1ULL << log_div;

      TensorUInt128<uint64_t, uint64_t> result = (TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + TensorUInt128<static_val<0>, static_val<1> >(1));
      uint64_t actual = static_cast<uint64_t>(result);
      VERIFY_IS_EQUAL(actual, expected);
    }
  }
}
#endif


EIGEN_DECLARE_TEST(cxx11_tensor_uint128)
{
#ifdef EIGEN_NO_INT128
  // Skip the test on compilers that don't support 128bit integers natively
  return;
#else
  CALL_SUBTEST_1(test_add());
  CALL_SUBTEST_2(test_sub());
  CALL_SUBTEST_3(test_mul());
  CALL_SUBTEST_4(test_div());
  CALL_SUBTEST_5(test_misc1());
  CALL_SUBTEST_6(test_misc2());
#endif
}