aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_uint128.cpp
blob: ee3767e58dc5d637aa5a2dfed7e4d7f2e8257218 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

#include <Eigen/CXX11/Tensor>

using Eigen::internal::TensorUInt128;
using Eigen::internal::static_val;

void VERIFY_EQUAL(TensorUInt128<uint64_t, uint64_t> actual, __uint128_t expected) {
  bool matchl = actual.lower() == static_cast<uint64_t>(expected);
  bool matchh = actual.upper() == static_cast<uint64_t>(expected >> 64);
  if (!matchl || !matchh) {
    const char* testname = g_test_stack.back().c_str();
    std::cerr << "Test " << testname << " failed in " << __FILE__
              << " (" << __LINE__ << ")"
              << std::endl;
    abort();
  }
}


void test_add() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      __uint128_t a = (static_cast<__uint128_t>(i1) << 64) + static_cast<__uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          __uint128_t b = (static_cast<__uint128_t>(j1) << 64) + static_cast<__uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i + j;
          __uint128_t expected = a + b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_sub() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      __uint128_t a = (static_cast<__uint128_t>(i1) << 64) + static_cast<__uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          __uint128_t b = (static_cast<__uint128_t>(j1) << 64) + static_cast<__uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i - j;
          __uint128_t expected = a - b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_mul() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      __uint128_t a = (static_cast<__uint128_t>(i1) << 64) + static_cast<__uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          __uint128_t b = (static_cast<__uint128_t>(j1) << 64) + static_cast<__uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i * j;
          __uint128_t expected = a * b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_div() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i1 = 0; i1 < 100; ++i1) {
    for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
      TensorUInt128<uint64_t, uint64_t> i(i1, i2);
      __uint128_t a = (static_cast<__uint128_t>(i1) << 64) + static_cast<__uint128_t>(i2);
      for (uint64_t j1 = 0; j1 < 100; ++j1) {
        for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
          TensorUInt128<uint64_t, uint64_t> j(j1, j2);
          __uint128_t b = (static_cast<__uint128_t>(j1) << 64) + static_cast<__uint128_t>(j2);
          TensorUInt128<uint64_t, uint64_t> actual = i / j;
          __uint128_t expected = a / b;
          VERIFY_EQUAL(actual, expected);
        }
      }
    }
  }
}

void test_misc1() {
  uint64_t incr = internal::random<uint64_t>(1, 9999999999);
  for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) {
    TensorUInt128<static_val<0>, uint64_t> i(0, i2);
    __uint128_t a = static_cast<__uint128_t>(i2);
    for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) {
      TensorUInt128<static_val<0>, uint64_t> j(0, j2);
      __uint128_t b = static_cast<__uint128_t>(j2);
      uint64_t actual = (i * j).upper();
      uint64_t expected = (a * b) >> 64;
      VERIFY_IS_EQUAL(actual, expected);
    }
  }
}

void test_misc2() {
  int64_t incr = internal::random<int64_t>(1, 100);
  for (int64_t log_div = 0; log_div < 63; ++log_div) {
    for (int64_t divider = 1; divider <= 1000000 * incr; divider += incr) {
      uint64_t expected = (static_cast<__uint128_t>(1) << (64+log_div)) / static_cast<__uint128_t>(divider) - (static_cast<__uint128_t>(1) << 64) + 1;
      uint64_t shift = 1ULL << log_div;

      TensorUInt128<uint64_t, uint64_t> result = (TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + TensorUInt128<static_val<0>, static_val<1> >(1));
      uint64_t actual = static_cast<uint64_t>(result);
      VERIFY_EQUAL(actual, expected);
    }
  }
}


void test_cxx11_tensor_uint128()
{
  CALL_SUBTEST_1(test_add());
  CALL_SUBTEST_2(test_sub());
  CALL_SUBTEST_3(test_mul());
  CALL_SUBTEST_4(test_div());
  CALL_SUBTEST_5(test_misc1());
  CALL_SUBTEST_6(test_misc2());
}