aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_thread_pool.cpp
blob: ea9d8afdc026017b451de7fdf48efb773e0c4de8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_USE_THREADS


#include "main.h"
#include <iostream>
#include <Eigen/CXX11/Tensor>

using Eigen::Tensor;


void test_multithread_elementwise()
{
  Tensor<float, 3> in1(2,3,7);
  Tensor<float, 3> in2(2,3,7);
  Tensor<float, 3> out(2,3,7);

  in1.setRandom();
  in2.setRandom();

  Eigen::ThreadPool tp(internal::random<int>(3, 11));
  Eigen::ThreadPoolDevice thread_pool_device(&tp, internal::random<int>(3, 11));
  out.device(thread_pool_device) = in1 + in2 * 3.14f;

  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 3; ++j) {
      for (int k = 0; k < 7; ++k) {
        VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f);
      }
    }
  }
}


void test_multithread_compound_assignment()
{
  Tensor<float, 3> in1(2,3,7);
  Tensor<float, 3> in2(2,3,7);
  Tensor<float, 3> out(2,3,7);

  in1.setRandom();
  in2.setRandom();

  Eigen::ThreadPool tp(internal::random<int>(3, 11));
  Eigen::ThreadPoolDevice thread_pool_device(&tp, internal::random<int>(3, 11));
  out.device(thread_pool_device) = in1;
  out.device(thread_pool_device) += in2 * 3.14f;

  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 3; ++j) {
      for (int k = 0; k < 7; ++k) {
        VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f);
      }
    }
  }
}

template<int DataLayout>
void test_multithread_contraction()
{
  Tensor<float, 4, DataLayout> t_left(30, 50, 37, 31);
  Tensor<float, 5, DataLayout> t_right(37, 31, 70, 2, 10);
  Tensor<float, 5, DataLayout> t_result(30, 50, 70, 2, 10);

  t_left.setRandom();
  t_right.setRandom();

  // this contraction should be equivalent to a single matrix multiplication
  typedef Tensor<float, 1>::DimensionPair DimPair;
  Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});

  typedef Map<Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
  MapXf m_left(t_left.data(), 1500, 1147);
  MapXf m_right(t_right.data(), 1147, 1400);
  Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);

  Eigen::ThreadPool tp(4);
  Eigen::ThreadPoolDevice thread_pool_device(&tp, 4);

  // compute results by separate methods
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  m_result = m_left * m_right;

 for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    VERIFY(&t_result.data()[i] != &m_result.data()[i]);
    if (fabsf(t_result(i) - m_result(i)) < 1e-4f) {
      continue;
    }
    if (Eigen::internal::isApprox(t_result(i), m_result(i), 1e-4f)) {
      continue;
    }
    std::cout << "mismatch detected at index " << i << ": " << t_result(i)
              << " vs " <<  m_result(i) << std::endl;
    assert(false);
  }
}

template<int DataLayout>
void test_contraction_corner_cases()
{
  Tensor<float, 2, DataLayout> t_left(32, 500);
  Tensor<float, 2, DataLayout> t_right(32, 28*28);
  Tensor<float, 2, DataLayout> t_result(500, 28*28);

  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_right = (t_right.constant(-0.6f) + t_right.random()) * 2.0f;
  t_result = t_result.constant(NAN);

  // this contraction should be equivalent to a single matrix multiplication
  typedef Tensor<float, 1>::DimensionPair DimPair;
  Eigen::array<DimPair, 1> dims{{DimPair(0, 0)}};

  typedef Map<Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
  MapXf m_left(t_left.data(), 32, 500);
  MapXf m_right(t_right.data(), 32, 28*28);
  Matrix<float, Dynamic, Dynamic, DataLayout> m_result(500, 28*28);

  Eigen::ThreadPool tp(12);
  Eigen::ThreadPoolDevice thread_pool_device(&tp, 12);

  // compute results by separate methods
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  m_result = m_left.transpose() * m_right;

  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!(numext::isnan)(t_result.data()[i]));
    if (fabsf(t_result.data()[i] - m_result.data()[i]) >= 1e-4f) {
      std::cout << "mismatch detected at index " << i << " : " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }

  t_left.resize(32, 1);
  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_result.resize (1, 28*28);
  t_result = t_result.constant(NAN);
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  new(&m_left) MapXf(t_left.data(), 32, 1);
  m_result = m_left.transpose() * m_right;
  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!(numext::isnan)(t_result.data()[i]));
    if (fabsf(t_result.data()[i] - m_result.data()[i]) >= 1e-4f) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }

  t_left.resize(32, 500);
  t_right.resize(32, 4);
  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_right = (t_right.constant(-0.6f) + t_right.random()) * 2.0f;
  t_result.resize (500, 4);
  t_result = t_result.constant(NAN);
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  new(&m_left) MapXf(t_left.data(), 32, 500);
  new(&m_right) MapXf(t_right.data(), 32, 4);
  m_result = m_left.transpose() * m_right;
  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!(numext::isnan)(t_result.data()[i]));
    if (fabsf(t_result.data()[i] - m_result.data()[i]) >= 1e-4f) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }

  t_left.resize(32, 1);
  t_right.resize(32, 4);
  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_right = (t_right.constant(-0.6f) + t_right.random()) * 2.0f;
  t_result.resize (1, 4);
  t_result = t_result.constant(NAN);
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  new(&m_left) MapXf(t_left.data(), 32, 1);
  new(&m_right) MapXf(t_right.data(), 32, 4);
  m_result = m_left.transpose() * m_right;
  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!(numext::isnan)(t_result.data()[i]));
    if (fabsf(t_result.data()[i] - m_result.data()[i]) >= 1e-4f) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }
}

template<int DataLayout>
void test_multithread_contraction_agrees_with_singlethread() {
  int contract_size = internal::random<int>(1, 5000);

  Tensor<float, 3, DataLayout> left(internal::random<int>(1, 80),
                                    contract_size,
                                    internal::random<int>(1, 100));

  Tensor<float, 4, DataLayout> right(internal::random<int>(1, 25),
                                     internal::random<int>(1, 37),
                                     contract_size,
                                     internal::random<int>(1, 51));

  left.setRandom();
  right.setRandom();

  // add constants to shift values away from 0 for more precision
  left += left.constant(1.5f);
  right += right.constant(1.5f);

  typedef Tensor<float, 1>::DimensionPair DimPair;
  Eigen::array<DimPair, 1> dims({{DimPair(1, 2)}});

  Eigen::ThreadPool tp(internal::random<int>(2, 11));
  Eigen::ThreadPoolDevice thread_pool_device(&tp, internal::random<int>(2, 11));

  Tensor<float, 5, DataLayout> st_result;
  st_result = left.contract(right, dims);

  Tensor<float, 5, DataLayout> tp_result(st_result.dimensions());
  tp_result.device(thread_pool_device) = left.contract(right, dims);

  VERIFY(dimensions_match(st_result.dimensions(), tp_result.dimensions()));
  for (ptrdiff_t i = 0; i < st_result.size(); i++) {
    // if both of the values are very small, then do nothing (because the test will fail
    // due to numerical precision issues when values are small)
    if (numext::abs(st_result.data()[i] - tp_result.data()[i]) >= 1e-4f) {
      VERIFY_IS_APPROX(st_result.data()[i], tp_result.data()[i]);
    }
  }
}

// Apply Sqrt to all output elements.
struct SqrtOutputKernel {
  template <typename Index, typename Scalar>
  EIGEN_ALWAYS_INLINE void operator()(
      const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
      const TensorContractionParams&, Index, Index, Index num_rows,
      Index num_cols) const {
    for (int i = 0; i < num_rows; ++i) {
      for (int j = 0; j < num_cols; ++j) {
        output_mapper(i, j) = std::sqrt(output_mapper(i, j));
      }
    }
  }
};

template <int DataLayout>
static void test_multithread_contraction_with_output_kernel() {
  typedef Tensor<float, 1>::DimensionPair DimPair;

  const int num_threads = internal::random<int>(2, 11);
  ThreadPool threads(num_threads);
  Eigen::ThreadPoolDevice device(&threads, num_threads);

  Tensor<float, 4, DataLayout> t_left(30, 50, 8, 31);
  Tensor<float, 5, DataLayout> t_right(8, 31, 7, 20, 10);
  Tensor<float, 5, DataLayout> t_result(30, 50, 7, 20, 10);

  t_left.setRandom();
  t_right.setRandom();
  // Put trash in mat4 to verify contraction clears output memory.
  t_result.setRandom();

  // Add a little offset so that the results won't be close to zero.
  t_left += t_left.constant(1.0f);
  t_right += t_right.constant(1.0f);

  typedef Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
  MapXf m_left(t_left.data(), 1500, 248);
  MapXf m_right(t_right.data(), 248, 1400);
  Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);

  // this contraction should be equivalent to a single matrix multiplication
  Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});

  // compute results by separate methods
  t_result.device(device) = t_left.contract(t_right, dims, SqrtOutputKernel());

  m_result = m_left * m_right;

  for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
    VERIFY(&t_result.data()[i] != &m_result.data()[i]);
    VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
  }
}

template<int DataLayout>
void test_full_contraction() {
  int contract_size1 = internal::random<int>(1, 500);
  int contract_size2 = internal::random<int>(1, 500);

  Tensor<float, 2, DataLayout> left(contract_size1,
                                    contract_size2);
  Tensor<float, 2, DataLayout> right(contract_size1,
                                    contract_size2);
  left.setRandom();
  right.setRandom();

  // add constants to shift values away from 0 for more precision
  left += left.constant(1.5f);
  right += right.constant(1.5f);

  typedef Tensor<float, 2>::DimensionPair DimPair;
  Eigen::array<DimPair, 2> dims({{DimPair(0, 0), DimPair(1, 1)}});

  Eigen::ThreadPool tp(internal::random<int>(2, 11));
  Eigen::ThreadPoolDevice thread_pool_device(&tp, internal::random<int>(2, 11));

  Tensor<float, 0, DataLayout> st_result;
  st_result = left.contract(right, dims);

  Tensor<float, 0, DataLayout> tp_result;
  tp_result.device(thread_pool_device) = left.contract(right, dims);

  VERIFY(dimensions_match(st_result.dimensions(), tp_result.dimensions()));
  // if both of the values are very small, then do nothing (because the test will fail
  // due to numerical precision issues when values are small)
  if (numext::abs(st_result() - tp_result()) >= 1e-4f) {
    VERIFY_IS_APPROX(st_result(), tp_result());
  }
}

template<int DataLayout>
void test_multithreaded_reductions() {
  const int num_threads = internal::random<int>(3, 11);
  ThreadPool thread_pool(num_threads);
  Eigen::ThreadPoolDevice thread_pool_device(&thread_pool, num_threads);

  const int num_rows = internal::random<int>(13, 732);
  const int num_cols = internal::random<int>(13, 732);
  Tensor<float, 2, DataLayout> t1(num_rows, num_cols);
  t1.setRandom();

  Tensor<float, 0, DataLayout> full_redux;
  full_redux = t1.sum();

  Tensor<float, 0, DataLayout> full_redux_tp;
  full_redux_tp.device(thread_pool_device) = t1.sum();

  // Check that the single threaded and the multi threaded reductions return
  // the same result.
  VERIFY_IS_APPROX(full_redux(), full_redux_tp());
}


void test_memcpy() {

  for (int i = 0; i < 5; ++i) {
    const int num_threads = internal::random<int>(3, 11);
    Eigen::ThreadPool tp(num_threads);
    Eigen::ThreadPoolDevice thread_pool_device(&tp, num_threads);

    const int size = internal::random<int>(13, 7632);
    Tensor<float, 1> t1(size);
    t1.setRandom();
    std::vector<float> result(size);
    thread_pool_device.memcpy(&result[0], t1.data(), size*sizeof(float));
    for (int j = 0; j < size; j++) {
      VERIFY_IS_EQUAL(t1(j), result[j]);
    }
  }
}


void test_multithread_random()
{
  Eigen::ThreadPool tp(2);
  Eigen::ThreadPoolDevice device(&tp, 2);
  Tensor<float, 1> t(1 << 20);
  t.device(device) = t.random<Eigen::internal::NormalRandomGenerator<float>>();
}

template<int DataLayout>
void test_multithread_shuffle()
{
  Tensor<float, 4, DataLayout> tensor(17,5,7,11);
  tensor.setRandom();

  const int num_threads = internal::random<int>(2, 11);
  ThreadPool threads(num_threads);
  Eigen::ThreadPoolDevice device(&threads, num_threads);

  Tensor<float, 4, DataLayout> shuffle(7,5,11,17);
  array<ptrdiff_t, 4> shuffles = {{2,1,3,0}};
  shuffle.device(device) = tensor.shuffle(shuffles);

  for (int i = 0; i < 17; ++i) {
    for (int j = 0; j < 5; ++j) {
      for (int k = 0; k < 7; ++k) {
        for (int l = 0; l < 11; ++l) {
          VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,j,l,i));
        }
      }
    }
  }
}


void test_cxx11_tensor_thread_pool()
{
  CALL_SUBTEST_1(test_multithread_elementwise());
  CALL_SUBTEST_1(test_multithread_compound_assignment());

  CALL_SUBTEST_2(test_multithread_contraction<ColMajor>());
  CALL_SUBTEST_2(test_multithread_contraction<RowMajor>());

  CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<ColMajor>());
  CALL_SUBTEST_3(test_multithread_contraction_agrees_with_singlethread<RowMajor>());
  CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<ColMajor>());
  CALL_SUBTEST_3(test_multithread_contraction_with_output_kernel<RowMajor>());

  // Exercise various cases that have been problematic in the past.
  CALL_SUBTEST_4(test_contraction_corner_cases<ColMajor>());
  CALL_SUBTEST_4(test_contraction_corner_cases<RowMajor>());

  CALL_SUBTEST_4(test_full_contraction<ColMajor>());
  CALL_SUBTEST_4(test_full_contraction<RowMajor>());

  CALL_SUBTEST_5(test_multithreaded_reductions<ColMajor>());
  CALL_SUBTEST_5(test_multithreaded_reductions<RowMajor>());

  CALL_SUBTEST_6(test_memcpy());
  CALL_SUBTEST_6(test_multithread_random());
  CALL_SUBTEST_6(test_multithread_shuffle<ColMajor>());
  CALL_SUBTEST_6(test_multithread_shuffle<RowMajor>());
}