aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_thread_pool.cpp
blob: 6fe65c7f982fd182b7fea3be49e719c8d11bb9e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_USE_THREADS


#include "main.h"
#include <iostream>
#include <Eigen/CXX11/Tensor>

using Eigen::Tensor;


static void test_multithread_elementwise()
{
  Tensor<float, 3> in1(2,3,7);
  Tensor<float, 3> in2(2,3,7);
  Tensor<float, 3> out(2,3,7);

  in1.setRandom();
  in2.setRandom();

  Eigen::ThreadPoolDevice thread_pool_device(internal::random<int>(3, 11));
  out.device(thread_pool_device) = in1 + in2 * 3.14f;

  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 3; ++j) {
      for (int k = 0; k < 7; ++k) {
        VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f);
      }
    }
  }
}


static void test_multithread_compound_assignment()
{
  Tensor<float, 3> in1(2,3,7);
  Tensor<float, 3> in2(2,3,7);
  Tensor<float, 3> out(2,3,7);

  in1.setRandom();
  in2.setRandom();

  Eigen::ThreadPoolDevice thread_pool_device(internal::random<int>(3, 11));
  out.device(thread_pool_device) = in1;
  out.device(thread_pool_device) += in2 * 3.14f;

  for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 3; ++j) {
      for (int k = 0; k < 7; ++k) {
        VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f);
      }
    }
  }
}

template<int DataLayout>
static void test_multithread_contraction()
{
  Tensor<float, 4, DataLayout> t_left(30, 50, 37, 31);
  Tensor<float, 5, DataLayout> t_right(37, 31, 70, 2, 10);
  Tensor<float, 5, DataLayout> t_result(30, 50, 70, 2, 10);

  t_left.setRandom();
  t_right.setRandom();

  // this contraction should be equivalent to a single matrix multiplication
  typedef Tensor<float, 1>::DimensionPair DimPair;
  Eigen::array<DimPair, 2> dims({{DimPair(2, 0), DimPair(3, 1)}});

  typedef Map<Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
  MapXf m_left(t_left.data(), 1500, 1147);
  MapXf m_right(t_right.data(), 1147, 1400);
  Matrix<float, Dynamic, Dynamic, DataLayout> m_result(1500, 1400);

  Eigen::ThreadPoolDevice thread_pool_device(4);

  // compute results by separate methods
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  m_result = m_left * m_right;

 for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    VERIFY(&t_result.data()[i] != &m_result.data()[i]);
    if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }
}

template<int DataLayout>
static void test_contraction_corner_cases()
{
  Tensor<float, 2, DataLayout> t_left(32, 500);
  Tensor<float, 2, DataLayout> t_right(32, 28*28);
  Tensor<float, 2, DataLayout> t_result(500, 28*28);

  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_right = (t_right.constant(-0.6f) + t_right.random()) * 2.0f;
  t_result = t_result.constant(NAN);

  // this contraction should be equivalent to a single matrix multiplication
  typedef Tensor<float, 1>::DimensionPair DimPair;
  Eigen::array<DimPair, 1> dims{{DimPair(0, 0)}};

  typedef Map<Matrix<float, Dynamic, Dynamic, DataLayout>> MapXf;
  MapXf m_left(t_left.data(), 32, 500);
  MapXf m_right(t_right.data(), 32, 28*28);
  Matrix<float, Dynamic, Dynamic, DataLayout> m_result(500, 28*28);

  Eigen::ThreadPoolDevice thread_pool_device(12);

  // compute results by separate methods
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  m_result = m_left.transpose() * m_right;

  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!std::isnan(t_result.data()[i]));
    if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
      std::cout << "mismatch detected at index " << i << " : " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }

  t_left.resize(32, 1);
  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_result.resize (1, 28*28);
  t_result = t_result.constant(NAN);
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  new(&m_left) MapXf(t_left.data(), 32, 1);
  m_result = m_left.transpose() * m_right;
  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!std::isnan(t_result.data()[i]));
    if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }

  t_left.resize(32, 500);
  t_right.resize(32, 4);
  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_right = (t_right.constant(-0.6f) + t_right.random()) * 2.0f;
  t_result.resize (500, 4);
  t_result = t_result.constant(NAN);
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  new(&m_left) MapXf(t_left.data(), 32, 500);
  new(&m_right) MapXf(t_right.data(), 32, 4);
  m_result = m_left.transpose() * m_right;
  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!std::isnan(t_result.data()[i]));
    if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }

  t_left.resize(32, 1);
  t_right.resize(32, 4);
  t_left = (t_left.constant(-0.5f) + t_left.random()) * 2.0f;
  t_right = (t_right.constant(-0.6f) + t_right.random()) * 2.0f;
  t_result.resize (1, 4);
  t_result = t_result.constant(NAN);
  t_result.device(thread_pool_device) = t_left.contract(t_right, dims);
  new(&m_left) MapXf(t_left.data(), 32, 1);
  new(&m_right) MapXf(t_right.data(), 32, 4);
  m_result = m_left.transpose() * m_right;
  for (ptrdiff_t i = 0; i < t_result.size(); i++) {
    assert(!std::isnan(t_result.data()[i]));
    if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
      std::cout << "mismatch detected: " << t_result.data()[i] << " vs " <<  m_result.data()[i] << std::endl;
      assert(false);
    }
  }
}

template<int DataLayout>
static void test_multithread_contraction_agrees_with_singlethread() {
  int contract_size = internal::random<int>(1, 5000);

  Tensor<float, 3, DataLayout> left(internal::random<int>(1, 80),
                                    contract_size,
                                    internal::random<int>(1, 100));

  Tensor<float, 4, DataLayout> right(internal::random<int>(1, 25),
                                     internal::random<int>(1, 37),
                                     contract_size,
                                     internal::random<int>(1, 51));

  left.setRandom();
  right.setRandom();

  // add constants to shift values away from 0 for more precision
  left += left.constant(1.5f);
  right += right.constant(1.5f);

  typedef Tensor<float, 1>::DimensionPair DimPair;
  Eigen::array<DimPair, 1> dims({{DimPair(1, 2)}});

  Eigen::ThreadPoolDevice thread_pool_device(internal::random<int>(2, 11));

  Tensor<float, 5, DataLayout> st_result;
  st_result = left.contract(right, dims);

  Tensor<float, 5, DataLayout> tp_result(st_result.dimensions());
  tp_result.device(thread_pool_device) = left.contract(right, dims);

  VERIFY(dimensions_match(st_result.dimensions(), tp_result.dimensions()));
  for (ptrdiff_t i = 0; i < st_result.size(); i++) {
    // if both of the values are very small, then do nothing (because the test will fail
    // due to numerical precision issues when values are small)
    if (fabs(st_result.data()[i] - tp_result.data()[i]) >= 1e-4) {
      VERIFY_IS_APPROX(st_result.data()[i], tp_result.data()[i]);
    }
  }
}


static void test_memcpy() {

  for (int i = 0; i < 5; ++i) {
    const int num_threads = internal::random<int>(3, 11);
    Eigen::ThreadPoolDevice thread_pool_device(num_threads);

    const int size = internal::random<int>(13, 7632);
    Tensor<float, 1> t1(size);
    t1.setRandom();
    std::vector<float> result(size);
    thread_pool_device.memcpy(&result[0], t1.data(), size*sizeof(float));
    for (int i = 0; i < size; i++) {
      VERIFY_IS_EQUAL(t1(i), result[i]);
    }
  }
}


static void test_multithread_random()
{
  Eigen::ThreadPoolDevice device(2);
  Tensor<float, 1> t(1 << 20);
  t.device(device) = t.random<Eigen::internal::NormalRandomGenerator<float>>();
}


void test_cxx11_tensor_thread_pool()
{
  CALL_SUBTEST(test_multithread_elementwise());
  CALL_SUBTEST(test_multithread_compound_assignment());

  CALL_SUBTEST(test_multithread_contraction<ColMajor>());
  CALL_SUBTEST(test_multithread_contraction<RowMajor>());

  CALL_SUBTEST(test_multithread_contraction_agrees_with_singlethread<ColMajor>());
  CALL_SUBTEST(test_multithread_contraction_agrees_with_singlethread<RowMajor>());

  // Exercise various cases that have been problematic in the past.
  CALL_SUBTEST(test_contraction_corner_cases<ColMajor>());
  CALL_SUBTEST(test_contraction_corner_cases<RowMajor>());

  CALL_SUBTEST(test_memcpy());

  CALL_SUBTEST(test_multithread_random());
}