aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_of_float16_cuda.cu
blob: cb917bb3737dcbea7d744885a148c72f83e38b75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_of_float16_cuda
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU


#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

using Eigen::Tensor;

#ifdef EIGEN_HAS_CUDA_FP16

void test_cuda_conversion() {
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice gpu_device(&stream);
  int num_elem = 101;
  
  float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
  Eigen::half* d_half = (Eigen::half*)gpu_device.allocate(num_elem * sizeof(Eigen::half));
  float* d_conv = (float*)gpu_device.allocate(num_elem * sizeof(float));

  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float(
      d_float, num_elem);
  Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_half(
      d_half, num_elem);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_conv(
      d_conv, num_elem);

  gpu_float.device(gpu_device) = gpu_float.random();
  gpu_half.device(gpu_device) = gpu_float.cast<Eigen::half>();
  gpu_conv.device(gpu_device) = gpu_half.cast<float>();

  Tensor<float, 1> initial(num_elem);
  Tensor<float, 1> final(num_elem);
  gpu_device.memcpyDeviceToHost(initial.data(), d_float, num_elem*sizeof(float));
  gpu_device.memcpyDeviceToHost(final.data(), d_conv, num_elem*sizeof(float));

  for (int i = 0; i < num_elem; ++i) {
    VERIFY_IS_APPROX(initial(i), final(i));
  }

  gpu_device.deallocate(d_float);
  gpu_device.deallocate(d_half);
  gpu_device.deallocate(d_conv);
}


void test_cuda_unary() {
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice gpu_device(&stream);
  int num_elem = 101;

  float* d_float = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float));

  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float(
      d_float, num_elem);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_half(
      d_res_half, num_elem);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_float(
      d_res_float, num_elem);

  gpu_float.device(gpu_device) = gpu_float.random() - gpu_float.constant(0.5f);
  gpu_res_float.device(gpu_device) = gpu_float.abs();
  gpu_res_half.device(gpu_device) = gpu_float.cast<Eigen::half>().abs().cast<float>();

  Tensor<float, 1> half_prec(num_elem);
  Tensor<float, 1> full_prec(num_elem);
  gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(float));
  gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float));
  gpu_device.synchronize();

  for (int i = 0; i < num_elem; ++i) {
    std::cout << "Checking unary " << i << std::endl;
    VERIFY_IS_APPROX(full_prec(i), half_prec(i));
  }

  gpu_device.deallocate(d_float);
  gpu_device.deallocate(d_res_half);
  gpu_device.deallocate(d_res_float);
}


void test_cuda_elementwise() {
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice gpu_device(&stream);
  int num_elem = 101;

  float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float));

  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float1(
      d_float1, num_elem);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_float2(
      d_float2, num_elem);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_half(
      d_res_half, num_elem);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_float(
      d_res_float, num_elem);

  gpu_float1.device(gpu_device) = gpu_float1.random();
  gpu_float2.device(gpu_device) = gpu_float2.random();
  gpu_res_float.device(gpu_device) = (gpu_float1 + gpu_float2) * gpu_float1;
  gpu_res_half.device(gpu_device) = ((gpu_float1.cast<Eigen::half>() + gpu_float2.cast<Eigen::half>()) * gpu_float1.cast<Eigen::half>()).cast<float>();

  Tensor<float, 1> half_prec(num_elem);
  Tensor<float, 1> full_prec(num_elem);
  gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(float));
  gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float));
  gpu_device.synchronize();

  for (int i = 0; i < num_elem; ++i) {
    std::cout << "Checking elemwise " << i << std::endl;
    VERIFY_IS_APPROX(full_prec(i), half_prec(i));
  }

  gpu_device.deallocate(d_float1);
  gpu_device.deallocate(d_float2);
  gpu_device.deallocate(d_res_half);
  gpu_device.deallocate(d_res_float);
}


void test_cuda_contractions() {
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice gpu_device(&stream);
  int rows = 23;
  int cols = 23;
  int num_elem = rows*cols;

  float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_half = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_float = (float*)gpu_device.allocate(num_elem * sizeof(float));

  Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float1(
      d_float1, rows, cols);
  Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float2(
      d_float2, rows, cols);
  Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_res_half(
      d_res_half, rows, cols);
  Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_res_float(
      d_res_float, rows, cols);

  gpu_float1.device(gpu_device) = gpu_float1.random() - gpu_float1.constant(0.5f);
  gpu_float2.device(gpu_device) = gpu_float2.random() - gpu_float1.constant(0.5f);

  typedef Tensor<float, 2>::DimensionPair DimPair;
  Eigen::array<DimPair, 1> dims(DimPair(1, 0));
  gpu_res_float.device(gpu_device) = gpu_float1.contract(gpu_float2, dims);
  gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().contract(gpu_float2.cast<Eigen::half>(), dims).cast<float>();

  Tensor<float, 2> half_prec(rows, cols);
  Tensor<float, 2> full_prec(rows, cols);
  gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, num_elem*sizeof(float));
  gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, num_elem*sizeof(float));
  gpu_device.synchronize();

  for (int i = 0; i < rows; ++i) {
    for (int j = 0; j < cols; ++j) {
      std::cout << "Checking contract " << i << " " << j << std::endl;
      VERIFY_IS_APPROX(full_prec(i, j), half_prec(i, j));
    }
  }

  gpu_device.deallocate(d_float1);
  gpu_device.deallocate(d_float2);
  gpu_device.deallocate(d_res_half);
  gpu_device.deallocate(d_res_float);
}


void test_cuda_reductions() {
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice gpu_device(&stream);
  int size = 13;
  int num_elem = size*size;

  float* d_float1 = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_float2 = (float*)gpu_device.allocate(num_elem * sizeof(float));
  float* d_res_half = (float*)gpu_device.allocate(size * sizeof(float));
  float* d_res_float = (float*)gpu_device.allocate(size * sizeof(float));

  Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float1(
      d_float1, size, size);
  Eigen::TensorMap<Eigen::Tensor<float, 2>, Eigen::Aligned> gpu_float2(
      d_float2, size, size);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_half(
      d_res_half, size);
  Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_res_float(
      d_res_float, size);

  gpu_float1.device(gpu_device) = gpu_float1.random();
  gpu_float2.device(gpu_device) = gpu_float2.random();

  Eigen::array<int, 1> redux_dim = {{0}};
  gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim);
  gpu_res_half.device(gpu_device) = gpu_float1.cast<Eigen::half>().sum(redux_dim).cast<float>();

  Tensor<float, 1> half_prec(size);
  Tensor<float, 1> full_prec(size);
  gpu_device.memcpyDeviceToHost(half_prec.data(), d_res_half, size*sizeof(float));
  gpu_device.memcpyDeviceToHost(full_prec.data(), d_res_float, size*sizeof(float));
  gpu_device.synchronize();

  for (int i = 0; i < size; ++i) {
    std::cout << "Checking redux " << i << std::endl;
    VERIFY_IS_APPROX(full_prec(i), half_prec(i));
  }

  gpu_device.deallocate(d_float1);
  gpu_device.deallocate(d_float2);
  gpu_device.deallocate(d_res_half);
  gpu_device.deallocate(d_res_float);
}


#endif


void test_cxx11_tensor_of_float16_cuda()
{
#ifdef EIGEN_HAS_CUDA_FP16
  Eigen::CudaStreamDevice stream;
  Eigen::GpuDevice device(&stream);
  if (device.majorDeviceVersion() > 5 ||
      (device.majorDeviceVersion() == 5 && device.minorDeviceVersion() >= 3)) {
    std::cout << "Running test on device with capability " << device.majorDeviceVersion() << "." << device.minorDeviceVersion() << std::endl;

    CALL_SUBTEST_1(test_cuda_conversion());
    CALL_SUBTEST_1(test_cuda_unary());
    CALL_SUBTEST_1(test_cuda_elementwise());
    CALL_SUBTEST_2(test_cuda_contractions());
    CALL_SUBTEST_3(test_cuda_reductions());
  }
  else {
   std::cout << "Half floats require compute capability of at least 5.3. This device only supports " << device.majorDeviceVersion() << "." << device.minorDeviceVersion() << ". Skipping the test" << std::endl;
  }
#else
  std::cout << "Half floats are not supported by this version of cuda: skipping the test" << std::endl;
#endif
}