aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_morphing_sycl.cpp
blob: bf001b40fb2906d1f2cbcf9b99ba181ad0203d10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
// Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.


#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL


#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;

template <typename DataType, int DataLayout, typename IndexType>
static void test_simple_reshape(const Eigen::SyclDevice& sycl_device)
{
  typename Tensor<DataType, 5 ,DataLayout, IndexType>::Dimensions dim1(2,3,1,7,1);
  typename Tensor<DataType, 3 ,DataLayout, IndexType>::Dimensions dim2(2,3,7);
  typename Tensor<DataType, 2 ,DataLayout, IndexType>::Dimensions dim3(6,7);
  typename Tensor<DataType, 2 ,DataLayout, IndexType>::Dimensions dim4(2,21);

  Tensor<DataType, 5, DataLayout, IndexType> tensor1(dim1);
  Tensor<DataType, 3, DataLayout, IndexType> tensor2(dim2);
  Tensor<DataType, 2, DataLayout, IndexType> tensor3(dim3);
  Tensor<DataType, 2, DataLayout, IndexType> tensor4(dim4);

  tensor1.setRandom();

  DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType)));
  DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
  DataType* gpu_data3  = static_cast<DataType*>(sycl_device.allocate(tensor3.size()*sizeof(DataType)));
  DataType* gpu_data4  = static_cast<DataType*>(sycl_device.allocate(tensor4.size()*sizeof(DataType)));

  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, dim1);
  TensorMap<Tensor<DataType, 3,DataLayout, IndexType>> gpu2(gpu_data2, dim2);
  TensorMap<Tensor<DataType, 2,DataLayout, IndexType>> gpu3(gpu_data3, dim3);
  TensorMap<Tensor<DataType, 2,DataLayout, IndexType>> gpu4(gpu_data4, dim4);

  sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType));

  gpu2.device(sycl_device)=gpu1.reshape(dim2);
  sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor1.size())*sizeof(DataType));

  gpu3.device(sycl_device)=gpu1.reshape(dim3);
  sycl_device.memcpyDeviceToHost(tensor3.data(), gpu_data3,(tensor3.size())*sizeof(DataType));

  gpu4.device(sycl_device)=gpu1.reshape(dim2).reshape(dim4);
  sycl_device.memcpyDeviceToHost(tensor4.data(), gpu_data4,(tensor4.size())*sizeof(DataType));
  for (IndexType i = 0; i < 2; ++i){
    for (IndexType j = 0; j < 3; ++j){
      for (IndexType k = 0; k < 7; ++k){
        VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k));      ///ColMajor
        if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) {
          VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k));    ///ColMajor
          VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k));    ///ColMajor
        }
        else{
          //VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k));      /// RowMajor
          VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j*7 +k));   /// RowMajor
          VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i*3 +j,k));   /// RowMajor
        }
      }
    }
  }
  sycl_device.deallocate(gpu_data1);
  sycl_device.deallocate(gpu_data2);
  sycl_device.deallocate(gpu_data3);
  sycl_device.deallocate(gpu_data4);
}


template<typename DataType, int DataLayout, typename IndexType>
static void test_reshape_as_lvalue(const Eigen::SyclDevice& sycl_device)
{
  typename Tensor<DataType, 3, DataLayout, IndexType>::Dimensions dim1(2,3,7);
  typename Tensor<DataType, 2, DataLayout, IndexType>::Dimensions dim2(6,7);
  typename Tensor<DataType, 5, DataLayout, IndexType>::Dimensions dim3(2,3,1,7,1);
  Tensor<DataType, 3, DataLayout, IndexType> tensor(dim1);
  Tensor<DataType, 2, DataLayout, IndexType> tensor2d(dim2);
  Tensor<DataType, 5, DataLayout, IndexType> tensor5d(dim3);

  tensor.setRandom();

  DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
  DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(tensor2d.size()*sizeof(DataType)));
  DataType* gpu_data3  = static_cast<DataType*>(sycl_device.allocate(tensor5d.size()*sizeof(DataType)));

  TensorMap< Tensor<DataType, 3, DataLayout, IndexType> > gpu1(gpu_data1, dim1);
  TensorMap< Tensor<DataType, 2, DataLayout, IndexType> > gpu2(gpu_data2, dim2);
  TensorMap< Tensor<DataType, 5, DataLayout, IndexType> > gpu3(gpu_data3, dim3);

  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));

  gpu2.reshape(dim1).device(sycl_device)=gpu1;
  sycl_device.memcpyDeviceToHost(tensor2d.data(), gpu_data2,(tensor2d.size())*sizeof(DataType));

  gpu3.reshape(dim1).device(sycl_device)=gpu1;
  sycl_device.memcpyDeviceToHost(tensor5d.data(), gpu_data3,(tensor5d.size())*sizeof(DataType));


  for (IndexType i = 0; i < 2; ++i){
    for (IndexType j = 0; j < 3; ++j){
      for (IndexType k = 0; k < 7; ++k){
        VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k));
        if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) {
          VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k));    ///ColMajor
        }
        else{
          VERIFY_IS_EQUAL(tensor2d(i*3 +j,k),tensor(i,j,k));   /// RowMajor
        }
      }
    }
  }
  sycl_device.deallocate(gpu_data1);
  sycl_device.deallocate(gpu_data2);
  sycl_device.deallocate(gpu_data3);
}


template <typename DataType, int DataLayout, typename IndexType>
static void test_simple_slice(const Eigen::SyclDevice &sycl_device)
{
  IndexType sizeDim1 = 2;
  IndexType sizeDim2 = 3;
  IndexType sizeDim3 = 5;
  IndexType sizeDim4 = 7;
  IndexType sizeDim5 = 11;
  array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
  Tensor<DataType, 5,DataLayout, IndexType> tensor(tensorRange);
  tensor.setRandom();
  array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}};
  Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range);

  DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
  DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType)));
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range);
  Eigen::DSizes<IndexType, 5> indices(1,2,3,4,5);
  Eigen::DSizes<IndexType, 5> sizes(1,1,1,1,1);
  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
  gpu2.device(sycl_device)=gpu1.slice(indices, sizes);
  sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType));
  VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));


  array<IndexType, 5> slice2_range ={{1,1,2,2,3}};
  Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range);
  DataType* gpu_data3  = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType)));
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range);
  Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5);
  Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3);
  gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2);
  sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType));
  for (IndexType i = 0; i < 2; ++i) {
    for (IndexType j = 0; j < 2; ++j) {
      for (IndexType k = 0; k < 3; ++k) {
        VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
      }
    }
  }
  sycl_device.deallocate(gpu_data1);
  sycl_device.deallocate(gpu_data2);
  sycl_device.deallocate(gpu_data3);
}


template <typename DataType, int DataLayout, typename IndexType>
static void test_strided_slice_as_rhs_sycl(const Eigen::SyclDevice &sycl_device)
{
  IndexType sizeDim1 = 2;
  IndexType sizeDim2 = 3;
  IndexType sizeDim3 = 5;
  IndexType sizeDim4 = 7;
  IndexType sizeDim5 = 11;
  typedef Eigen::DSizes<IndexType, 5> Index5;
  Index5 strides(1L,1L,1L,1L,1L);
  Index5 indicesStart(1L,2L,3L,4L,5L);
  Index5 indicesStop(2L,3L,4L,5L,6L);
  Index5 lengths(1L,1L,1L,1L,1L);

  array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
  Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange);
  tensor.setRandom();

  array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}};
  Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range);
  Tensor<DataType, 5, DataLayout, IndexType> slice_stride1(slice1_range);

  DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
  DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType)));
  DataType* gpu_data_stride2  = static_cast<DataType*>(sycl_device.allocate(slice_stride1.size()*sizeof(DataType)));

  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range);
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride2(gpu_data_stride2, slice1_range);

  Eigen::DSizes<IndexType, 5> indices(1,2,3,4,5);
  Eigen::DSizes<IndexType, 5> sizes(1,1,1,1,1);
  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
  gpu2.device(sycl_device)=gpu1.slice(indices, sizes);
  sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType));

  gpu_stride2.device(sycl_device)=gpu1.stridedSlice(indicesStart,indicesStop,strides);
  sycl_device.memcpyDeviceToHost(slice_stride1.data(), gpu_data_stride2,(slice_stride1.size())*sizeof(DataType));

  VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
  VERIFY_IS_EQUAL(slice_stride1(0,0,0,0,0), tensor(1,2,3,4,5));

  array<IndexType, 5> slice2_range ={{1,1,2,2,3}};
  Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range);
  Tensor<DataType, 5, DataLayout, IndexType> strideSlice2(slice2_range);

  DataType* gpu_data3  = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType)));
  DataType* gpu_data_stride3  = static_cast<DataType*>(sycl_device.allocate(strideSlice2.size()*sizeof(DataType)));
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range);
  TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride3(gpu_data_stride3, slice2_range);
  Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5);
  Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3);
  Index5 strides2(1L,1L,1L,1L,1L);
  Index5 indicesStart2(1L,1L,3L,4L,5L);
  Index5 indicesStop2(2L,2L,5L,6L,8L);

  gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2);
  sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType));

  gpu_stride3.device(sycl_device)=gpu1.stridedSlice(indicesStart2,indicesStop2,strides2);
  sycl_device.memcpyDeviceToHost(strideSlice2.data(), gpu_data_stride3,(strideSlice2.size())*sizeof(DataType));

  for (IndexType i = 0; i < 2; ++i) {
    for (IndexType j = 0; j < 2; ++j) {
      for (IndexType k = 0; k < 3; ++k) {
        VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
        VERIFY_IS_EQUAL(strideSlice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
      }
    }
  }
  sycl_device.deallocate(gpu_data1);
  sycl_device.deallocate(gpu_data2);
  sycl_device.deallocate(gpu_data3);
}

template<typename DataType, int DataLayout, typename IndexType>
static void test_strided_slice_write_sycl(const Eigen::SyclDevice& sycl_device)
{
  typedef Tensor<DataType, 2, DataLayout, IndexType> Tensor2f;
  typedef Eigen::DSizes<IndexType, 2> Index2;
  IndexType sizeDim1 = 7L;
  IndexType sizeDim2 = 11L;
  array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}};
  Tensor<DataType, 2, DataLayout, IndexType> tensor(tensorRange),tensor2(tensorRange);
  IndexType sliceDim1 = 2;
  IndexType sliceDim2 = 3;
  array<IndexType, 2> sliceRange = {{sliceDim1, sliceDim2}};
  Tensor2f slice(sliceRange);
  Index2 strides(1L,1L);
  Index2 indicesStart(3L,4L);
  Index2 indicesStop(5L,7L);
  Index2 lengths(2L,3L);

  DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
  DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
  DataType* gpu_data3  = static_cast<DataType*>(sycl_device.allocate(slice.size()*sizeof(DataType)));
  TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
  TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, tensorRange);
  TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu3(gpu_data3, sliceRange);


  tensor.setRandom();
  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
  gpu2.device(sycl_device)=gpu1;

  slice.setRandom();
  sycl_device.memcpyHostToDevice(gpu_data3, slice.data(),(slice.size())*sizeof(DataType));


  gpu1.slice(indicesStart,lengths).device(sycl_device)=gpu3;
  gpu2.stridedSlice(indicesStart,indicesStop,strides).device(sycl_device)=gpu3;
  sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data1,(tensor.size())*sizeof(DataType));
  sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType));

  for(IndexType i=0;i<sizeDim1;i++)
    for(IndexType j=0;j<sizeDim2;j++){
    VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
  }
  sycl_device.deallocate(gpu_data1);
  sycl_device.deallocate(gpu_data2);
  sycl_device.deallocate(gpu_data3);
}

template <typename OutIndex, typename DSizes>
Eigen::array<OutIndex, DSizes::count> To32BitDims(const DSizes& in) {
  Eigen::array<OutIndex, DSizes::count> out;
  for (int i = 0; i < DSizes::count; ++i) {
    out[i] = in[i];
  }
  return out;
}

template <class DataType, int DataLayout, typename IndexType, typename ConvertedIndexType>
int run_eigen(const SyclDevice& sycl_device) {
  using TensorI64 = Tensor<DataType, 5, DataLayout, IndexType>;
  using TensorI32 = Tensor<DataType, 5, DataLayout, ConvertedIndexType>;
  using TensorMI64 = TensorMap<TensorI64>;
  using TensorMI32 = TensorMap<TensorI32>;
  Eigen::array<IndexType, 5> tensor_range{{4, 1, 1, 1, 6}};
  Eigen::array<IndexType, 5> slice_range{{4, 1, 1, 1, 3}};

  TensorI64 out_tensor_gpu(tensor_range);
  TensorI64 out_tensor_cpu(tensor_range);
  out_tensor_cpu.setRandom();

  TensorI64 sub_tensor(slice_range);
  sub_tensor.setRandom();

  DataType* out_gpu_data = static_cast<DataType*>(sycl_device.allocate(out_tensor_cpu.size() * sizeof(DataType)));
  DataType* sub_gpu_data = static_cast<DataType*>(sycl_device.allocate(sub_tensor.size() * sizeof(DataType)));
  TensorMI64 out_gpu(out_gpu_data, tensor_range);
  TensorMI64 sub_gpu(sub_gpu_data, slice_range);

  sycl_device.memcpyHostToDevice(out_gpu_data, out_tensor_cpu.data(), out_tensor_cpu.size() * sizeof(DataType));
  sycl_device.memcpyHostToDevice(sub_gpu_data, sub_tensor.data(), sub_tensor.size() * sizeof(DataType));

  Eigen::array<ConvertedIndexType, 5> slice_offset_32{{0, 0, 0, 0, 3}};
  Eigen::array<ConvertedIndexType, 5> slice_range_32{{4, 1, 1, 1, 3}};
  TensorMI32 out_cpu_32(out_tensor_cpu.data(), To32BitDims<ConvertedIndexType>(out_tensor_cpu.dimensions()));
  TensorMI32 sub_cpu_32(sub_tensor.data(), To32BitDims<ConvertedIndexType>(sub_tensor.dimensions()));
  TensorMI32 out_gpu_32(out_gpu.data(), To32BitDims<ConvertedIndexType>(out_gpu.dimensions()));
  TensorMI32 sub_gpu_32(sub_gpu.data(), To32BitDims<ConvertedIndexType>(sub_gpu.dimensions()));

  out_gpu_32.slice(slice_offset_32, slice_range_32).device(sycl_device) = sub_gpu_32;

  out_cpu_32.slice(slice_offset_32, slice_range_32) = sub_cpu_32;

  sycl_device.memcpyDeviceToHost(out_tensor_gpu.data(), out_gpu_data, out_tensor_cpu.size() * sizeof(DataType));
  int has_err = 0;
  for (IndexType i = 0; i < out_tensor_cpu.size(); ++i) {
    auto exp = out_tensor_cpu(i);
    auto val = out_tensor_gpu(i);
    if (val != exp) {
      std::cout << "#" << i << " got " << val << " but expected " << exp << std::endl;
      has_err = 1;
    }
  }
  sycl_device.deallocate(out_gpu_data);
  sycl_device.deallocate(sub_gpu_data);
  return has_err;
}

template<typename DataType, typename dev_Selector> void sycl_morphing_test_per_device(dev_Selector s){
  QueueInterface queueInterface(s);
  auto sycl_device = Eigen::SyclDevice(&queueInterface);
  test_simple_slice<DataType, RowMajor, int64_t>(sycl_device);
  test_simple_slice<DataType, ColMajor, int64_t>(sycl_device);
  test_simple_reshape<DataType, RowMajor, int64_t>(sycl_device);
  test_simple_reshape<DataType, ColMajor, int64_t>(sycl_device);
  test_reshape_as_lvalue<DataType, RowMajor, int64_t>(sycl_device);
  test_reshape_as_lvalue<DataType, ColMajor, int64_t>(sycl_device);
  test_strided_slice_write_sycl<DataType, ColMajor, int64_t>(sycl_device);
  test_strided_slice_write_sycl<DataType, RowMajor, int64_t>(sycl_device);
  test_strided_slice_as_rhs_sycl<DataType, ColMajor, int64_t>(sycl_device);
  test_strided_slice_as_rhs_sycl<DataType, RowMajor, int64_t>(sycl_device);
  run_eigen<float, RowMajor, long, int>(sycl_device); 
}
EIGEN_DECLARE_TEST(cxx11_tensor_morphing_sycl)
{
  for (const auto& device :Eigen::get_sycl_supported_devices()) {
    CALL_SUBTEST(sycl_morphing_test_per_device<float>(device));
  }
}