aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_inflation_sycl.cpp
blob: 521ae0cc3d31dbdf2f5d3e407d6d289ebb50c59b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli    Codeplay Software Ltd.
// Ralph Potter  Codeplay Software Ltd.
// Luke Iwanski  Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#define EIGEN_USE_SYCL

#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

using Eigen::Tensor;

// Inflation Definition for each dimension the inflated val would be
//((dim-1)*strid[dim] +1)

// for 1 dimension vector of size 3 with value (4,4,4) with the inflated stride value of 3 would be changed to
// tensor of size (2*3) +1 = 7 with the value of
// (4, 0, 0, 4, 0, 0, 4).

template <typename DataType, int DataLayout, typename IndexType>
void test_simple_inflation_sycl(const Eigen::SyclDevice &sycl_device) {


  IndexType sizeDim1 = 2;
  IndexType sizeDim2 = 3;
  IndexType sizeDim3 = 5;
  IndexType sizeDim4 = 7;
  array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
  Tensor<DataType, 4, DataLayout,IndexType> tensor(tensorRange);
  Tensor<DataType, 4, DataLayout,IndexType> no_stride(tensorRange);
  tensor.setRandom();

  array<IndexType, 4> strides;
  strides[0] = 1;
  strides[1] = 1;
  strides[2] = 1;
  strides[3] = 1;


  const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
  DataType* gpu_data_tensor  = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
  DataType* gpu_data_no_stride  = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));

  TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
  TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_no_stride(gpu_data_no_stride, tensorRange);

  sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
  gpu_no_stride.device(sycl_device)=gpu_tensor.inflate(strides);
  sycl_device.memcpyDeviceToHost(no_stride.data(), gpu_data_no_stride, tensorBuffSize);

  VERIFY_IS_EQUAL(no_stride.dimension(0), sizeDim1);
  VERIFY_IS_EQUAL(no_stride.dimension(1), sizeDim2);
  VERIFY_IS_EQUAL(no_stride.dimension(2), sizeDim3);
  VERIFY_IS_EQUAL(no_stride.dimension(3), sizeDim4);

  for (IndexType i = 0; i < 2; ++i) {
    for (IndexType j = 0; j < 3; ++j) {
      for (IndexType k = 0; k < 5; ++k) {
        for (IndexType l = 0; l < 7; ++l) {
          VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l));
        }
      }
    }
  }


  strides[0] = 2;
  strides[1] = 4;
  strides[2] = 2;
  strides[3] = 3;

  IndexType inflatedSizeDim1 = 3;
  IndexType inflatedSizeDim2 = 9;
  IndexType inflatedSizeDim3 = 9;
  IndexType inflatedSizeDim4 = 19;
  array<IndexType, 4> inflatedTensorRange = {{inflatedSizeDim1, inflatedSizeDim2, inflatedSizeDim3, inflatedSizeDim4}};

  Tensor<DataType, 4, DataLayout, IndexType> inflated(inflatedTensorRange);

  const size_t inflatedTensorBuffSize =inflated.size()*sizeof(DataType);
  DataType* gpu_data_inflated  = static_cast<DataType*>(sycl_device.allocate(inflatedTensorBuffSize));
  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_inflated(gpu_data_inflated, inflatedTensorRange);
  gpu_inflated.device(sycl_device)=gpu_tensor.inflate(strides);
  sycl_device.memcpyDeviceToHost(inflated.data(), gpu_data_inflated, inflatedTensorBuffSize);

  VERIFY_IS_EQUAL(inflated.dimension(0), inflatedSizeDim1);
  VERIFY_IS_EQUAL(inflated.dimension(1), inflatedSizeDim2);
  VERIFY_IS_EQUAL(inflated.dimension(2), inflatedSizeDim3);
  VERIFY_IS_EQUAL(inflated.dimension(3), inflatedSizeDim4);

  for (IndexType i = 0; i < inflatedSizeDim1; ++i) {
    for (IndexType j = 0; j < inflatedSizeDim2; ++j) {
      for (IndexType k = 0; k < inflatedSizeDim3; ++k) {
        for (IndexType l = 0; l < inflatedSizeDim4; ++l) {
          if (i % strides[0] == 0 &&
              j % strides[1] == 0 &&
              k % strides[2] == 0 &&
              l % strides[3] == 0) {
            VERIFY_IS_EQUAL(inflated(i,j,k,l),
                            tensor(i/strides[0], j/strides[1], k/strides[2], l/strides[3]));
          } else {
            VERIFY_IS_EQUAL(0, inflated(i,j,k,l));
          }
        }
      }
    }
  }
  sycl_device.deallocate(gpu_data_tensor);
  sycl_device.deallocate(gpu_data_no_stride);
  sycl_device.deallocate(gpu_data_inflated);
}

template<typename DataType, typename dev_Selector> void sycl_inflation_test_per_device(dev_Selector s){
  QueueInterface queueInterface(s);
  auto sycl_device = Eigen::SyclDevice(&queueInterface);
  test_simple_inflation_sycl<DataType, RowMajor, int64_t>(sycl_device);
  test_simple_inflation_sycl<DataType, ColMajor, int64_t>(sycl_device);
}
EIGEN_DECLARE_TEST(cxx11_tensor_inflation_sycl)
{
  for (const auto& device :Eigen::get_sycl_supported_devices()) {
    CALL_SUBTEST(sycl_inflation_test_per_device<float>(device));
  }
}