aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_executor.cpp
blob: 162dab7b8269bb99d1d56db8567e8b044c5862fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018 Eugene Zhulenev <ezhulenev@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#define EIGEN_USE_THREADS

#include "main.h"

#include <Eigen/CXX11/Tensor>

using Eigen::Tensor;
using Eigen::RowMajor;
using Eigen::ColMajor;

// A set of tests to verify that different TensorExecutor strategies yields the
// same results for all the ops, supporting tiled evaluation.

template <int NumDims>
static array<Index, NumDims> RandomDims(int min_dim = 1, int max_dim = 20) {
  array<Index, NumDims> dims;
  for (int i = 0; i < NumDims; ++i) {
    dims[i] = internal::random<int>(min_dim, max_dim);
  }
  return dims;
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_unary_expr(Device d)
{
  static constexpr int Options = 0 | Layout;

  // Pick a large enough tensor size to bypass small tensor block evaluation
  // optimization.
  auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);

  Tensor<T, NumDims, Options, Index> src(dims);
  Tensor<T, NumDims, Options, Index> dst(dims);

  src.setRandom();
  const auto expr = src.square();

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    T square = src.coeff(i) * src.coeff(i);
    VERIFY_IS_EQUAL(square, dst.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_binary_expr(Device d)
{
  static constexpr int Options = 0 | Layout;

  // Pick a large enough tensor size to bypass small tensor block evaluation
  // optimization.
  auto dims = RandomDims<NumDims>(50 / NumDims, 100 / NumDims);

  Tensor<T, NumDims, Options, Index> lhs(dims);
  Tensor<T, NumDims, Options, Index> rhs(dims);
  Tensor<T, NumDims, Options, Index> dst(dims);

  lhs.setRandom();
  rhs.setRandom();

  const auto expr = lhs + rhs;

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    T sum = lhs.coeff(i) + rhs.coeff(i);
    VERIFY_IS_EQUAL(sum, dst.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_broadcasting(Device d)
{
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(1, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  const auto broadcasts = RandomDims<NumDims>(1, 7);
  const auto expr = src.broadcast(broadcasts);

  // We assume that broadcasting on a default device is tested and correct, so
  // we can rely on it to verify correctness of tensor executor and tiling.
  Tensor<T, NumDims, Options, Index> golden;
  golden = expr;

  // Now do the broadcasting using configured tensor executor.
  Tensor<T, NumDims, Options, Index> dst(golden.dimensions());

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_chipping_rvalue(Device d)
{
  auto dims = RandomDims<NumDims>(1, 10);
  Tensor<T, NumDims, Layout, Index> src(dims);
  src.setRandom();

#define TEST_CHIPPING(CHIP_DIM)                                           \
  if (NumDims > (CHIP_DIM)) {                                             \
    const auto offset = internal::random<Index>(0, dims[(CHIP_DIM)] - 1); \
    const auto expr = src.template chip<(CHIP_DIM)>(offset);              \
                                                                          \
    Tensor<T, NumDims - 1, Layout, Index> golden;                         \
    golden = expr;                                                        \
                                                                          \
    Tensor<T, NumDims - 1, Layout, Index> dst(golden.dimensions());       \
                                                                          \
    using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;   \
    using Executor = internal::TensorExecutor<const Assign, Device,       \
                                              Vectorizable, Tileable>;    \
                                                                          \
    Executor::run(Assign(dst, expr), d);                                  \
                                                                          \
    for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {            \
      VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));                     \
    }                                                                     \
  }

  TEST_CHIPPING(0)
  TEST_CHIPPING(1)
  TEST_CHIPPING(2)
  TEST_CHIPPING(3)
  TEST_CHIPPING(4)
  TEST_CHIPPING(5)

#undef TEST_CHIPPING
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
    bool Tileable, int Layout>
static void test_execute_chipping_lvalue(Device d)
{
  auto dims = RandomDims<NumDims>(1, 10);

#define TEST_CHIPPING(CHIP_DIM)                                             \
  if (NumDims > (CHIP_DIM)) {                                               \
    /* Generate random data that we'll assign to the chipped tensor dim. */ \
    array<Index, NumDims - 1> src_dims;                                     \
    for (int i = 0; i < NumDims - 1; ++i) {                                 \
      int dim = i < (CHIP_DIM) ? i : i + 1;                                 \
      src_dims[i] = dims[dim];                                              \
    }                                                                       \
                                                                            \
    Tensor<T, NumDims - 1, Layout, Index> src(src_dims);                    \
    src.setRandom();                                                        \
                                                                            \
    const auto offset = internal::random<Index>(0, dims[(CHIP_DIM)] - 1);   \
                                                                            \
    /* Generate random data to fill non-chipped dimensions*/                \
    Tensor<T, NumDims, Layout, Index> random(dims);                         \
    random.setRandom();                                                     \
                                                                            \
    Tensor<T, NumDims, Layout, Index> golden(dims);                         \
    golden = random;                                                        \
    golden.template chip<(CHIP_DIM)>(offset) = src;                         \
                                                                            \
    Tensor<T, NumDims, Layout, Index> dst(dims);                            \
    dst = random;                                                           \
    auto expr = dst.template chip<(CHIP_DIM)>(offset);                      \
                                                                            \
    using Assign = TensorAssignOp<decltype(expr), const decltype(src)>;     \
    using Executor = internal::TensorExecutor<const Assign, Device,         \
                                              Vectorizable, Tileable>;      \
                                                                            \
    Executor::run(Assign(expr, src), d);                                    \
                                                                            \
    for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {              \
      VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));                       \
    }                                                                       \
  }

  TEST_CHIPPING(0)
  TEST_CHIPPING(1)
  TEST_CHIPPING(2)
  TEST_CHIPPING(3)
  TEST_CHIPPING(4)
  TEST_CHIPPING(5)

#undef TEST_CHIPPING
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_shuffle_rvalue(Device d)
{
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(1, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  // Create a random dimension re-ordering/shuffle.
  std::vector<Index> shuffle;
  for (int i = 0; i < NumDims; ++i) shuffle.push_back(i);
  std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());

  const auto expr = src.shuffle(shuffle);

  // We assume that shuffling on a default device is tested and correct, so
  // we can rely on it to verify correctness of tensor executor and tiling.
  Tensor<T, NumDims, Options, Index> golden;
  golden = expr;

  // Now do the shuffling using configured tensor executor.
  Tensor<T, NumDims, Options, Index> dst(golden.dimensions());

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_shuffle_lvalue(Device d)
{
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(5, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  // Create a random dimension re-ordering/shuffle.
  std::vector<Index> shuffle;
  for (int i = 0; i < NumDims; ++i) shuffle.push_back(i);
  std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());

  array<Index, NumDims> shuffled_dims;
  for (int i = 0; i < NumDims; ++i) shuffled_dims[shuffle[i]] = dims[i];

  // We assume that shuffling on a default device is tested and correct, so
  // we can rely on it to verify correctness of tensor executor and tiling.
  Tensor<T, NumDims, Options, Index> golden(shuffled_dims);
  golden.shuffle(shuffle) = src;

  // Now do the shuffling using configured tensor executor.
  Tensor<T, NumDims, Options, Index> dst(shuffled_dims);

  auto expr = dst.shuffle(shuffle);

  using Assign = TensorAssignOp<decltype(expr), const decltype(src)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(expr, src), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_reduction(Device d)
{
  static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");

  static constexpr int ReducedDims = NumDims - 2;
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(5, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  // Pick two random and unique reduction dimensions.
  int reduction0 = internal::random<int>(0, NumDims - 1);
  int reduction1 = internal::random<int>(0, NumDims - 1);
  while (reduction0 == reduction1) {
    reduction1 = internal::random<int>(0, NumDims - 1);
  }

  DSizes<Index, 2> reduction_axis;
  reduction_axis[0] = reduction0;
  reduction_axis[1] = reduction1;

  Tensor<T, ReducedDims, Options, Index> golden = src.sum(reduction_axis);

  // Now do the reduction using configured tensor executor.
  Tensor<T, ReducedDims, Options, Index> dst(golden.dimensions());

  auto expr = src.sum(reduction_axis);

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
    bool Tileable, int Layout>
static void test_execute_reshape(Device d)
{
  static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");

  static constexpr int ReshapedDims = NumDims - 1;
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(5, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  // Multiple 0th dimension and then shuffle.
  std::vector<Index> shuffle;
  for (int i = 0; i < ReshapedDims; ++i) shuffle.push_back(i);
  std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());

  DSizes<Index, ReshapedDims> reshaped_dims;
  reshaped_dims[shuffle[0]] = dims[0] * dims[1];
  for (int i = 1; i < ReshapedDims; ++i) reshaped_dims[shuffle[i]] = dims[i + 1];

  Tensor<T, ReshapedDims, Options, Index> golden = src.reshape(reshaped_dims);

  // Now reshape using configured tensor executor.
  Tensor<T, ReshapedDims, Options, Index> dst(golden.dimensions());

  auto expr = src.reshape(reshaped_dims);

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
          bool Tileable, int Layout>
static void test_execute_slice_rvalue(Device d)
{
  static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(5, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  // Pick a random slice of src tensor.
  auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>());
  auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>());

  // Make sure that slice start + size do not overflow tensor dims.
  for (int i = 0; i < NumDims; ++i) {
    slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
    slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
  }

  Tensor<T, NumDims, Options, Index> golden =
      src.slice(slice_start, slice_size);

  // Now reshape using configured tensor executor.
  Tensor<T, NumDims, Options, Index> dst(golden.dimensions());

  auto expr = src.slice(slice_start, slice_size);

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
    bool Tileable, int Layout>
static void test_execute_slice_lvalue(Device d)
{
  static_assert(NumDims >= 2, "NumDims must be greater or equal than 2");
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(5, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  // Pick a random slice of src tensor.
  auto slice_start = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10));
  auto slice_size = DSizes<Index, NumDims>(RandomDims<NumDims>(1, 10));

  // Make sure that slice start + size do not overflow tensor dims.
  for (int i = 0; i < NumDims; ++i) {
    slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
    slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
  }

  Tensor<T, NumDims, Options, Index> slice(slice_size);
  slice.setRandom();

  // Assign a slice using default executor.
  Tensor<T, NumDims, Options, Index> golden = src;
  golden.slice(slice_start, slice_size) = slice;

  // And using configured execution strategy.
  Tensor<T, NumDims, Options, Index> dst = src;
  auto expr = dst.slice(slice_start, slice_size);

  using Assign = TensorAssignOp<decltype(expr), const decltype(slice)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(expr, slice), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template <typename T, int NumDims, typename Device, bool Vectorizable,
    bool Tileable, int Layout>
static void test_execute_broadcasting_of_forced_eval(Device d)
{
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(1, 10);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  const auto broadcasts = RandomDims<NumDims>(1, 7);
  const auto expr = src.square().eval().broadcast(broadcasts);

  // We assume that broadcasting on a default device is tested and correct, so
  // we can rely on it to verify correctness of tensor executor and tiling.
  Tensor<T, NumDims, Options, Index> golden;
  golden = expr;

  // Now do the broadcasting using configured tensor executor.
  Tensor<T, NumDims, Options, Index> dst(golden.dimensions());

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
      internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

template<typename T, int NumDims>
struct DummyGenerator {
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
  T operator()(const array <Index, NumDims>& dims) const {
    T result = static_cast<T>(0);
    for (int i = 0; i < NumDims; ++i) {
      result += static_cast<T>((i + 1) * dims[i]);
    }
    return result;
  }
};

template <typename T, int NumDims, typename Device, bool Vectorizable,
    bool Tileable, int Layout>
static void test_execute_generator_op(Device d)
{
  static constexpr int Options = 0 | Layout;

  auto dims = RandomDims<NumDims>(20, 30);
  Tensor<T, NumDims, Options, Index> src(dims);
  src.setRandom();

  const auto expr = src.generate(DummyGenerator<T, NumDims>());

  // We assume that generator on a default device is tested and correct, so
  // we can rely on it to verify correctness of tensor executor and tiling.
  Tensor<T, NumDims, Options, Index> golden;
  golden = expr;

  // Now do the broadcasting using configured tensor executor.
  Tensor<T, NumDims, Options, Index> dst(golden.dimensions());

  using Assign = TensorAssignOp<decltype(dst), const decltype(expr)>;
  using Executor =
    internal::TensorExecutor<const Assign, Device, Vectorizable, Tileable>;

  Executor::run(Assign(dst, expr), d);

  for (Index i = 0; i < dst.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(dst.coeff(i), golden.coeff(i));
  }
}

#define CALL_SUBTEST_PART(PART) \
  CALL_SUBTEST_##PART

#define CALL_SUBTEST_COMBINATIONS(PART, NAME, T, NUM_DIMS)                                                \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    false, false, ColMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    false, true,  ColMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    true,  false, ColMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    true,  true,  ColMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    false, false, RowMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    false, true,  RowMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    true,  false, RowMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, DefaultDevice,    true,  true,  RowMajor>(default_device))); \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, false, ColMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, true,  ColMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, true,  false, ColMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, true,  true,  ColMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, false, RowMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, false, true,  RowMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, true,  false, RowMajor>(tp_device)));      \
  CALL_SUBTEST_PART(PART)((NAME<T, NUM_DIMS, ThreadPoolDevice, true,  true,  RowMajor>(tp_device)))

EIGEN_DECLARE_TEST(cxx11_tensor_executor) {
  Eigen::DefaultDevice default_device;

  const auto num_threads = internal::random<int>(1, 24);
  Eigen::ThreadPool tp(num_threads);
  Eigen::ThreadPoolDevice tp_device(&tp, num_threads);

  CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 3);
  CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 4);
  CALL_SUBTEST_COMBINATIONS(1, test_execute_unary_expr, float, 5);

  CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 3);
  CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 4);
  CALL_SUBTEST_COMBINATIONS(2, test_execute_binary_expr, float, 5);

  CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 3);
  CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 4);
  CALL_SUBTEST_COMBINATIONS(3, test_execute_broadcasting, float, 5);

  CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 3);
  CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 4);
  CALL_SUBTEST_COMBINATIONS(4, test_execute_chipping_rvalue, float, 5);

  CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 3);
  CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 4);
  CALL_SUBTEST_COMBINATIONS(5, test_execute_chipping_lvalue, float, 5);

  CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 3);
  CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 4);
  CALL_SUBTEST_COMBINATIONS(6, test_execute_shuffle_rvalue, float, 5);

  CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 3);
  CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 4);
  CALL_SUBTEST_COMBINATIONS(7, test_execute_shuffle_lvalue, float, 5);

  CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 2);
  CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 3);
  CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 4);
  CALL_SUBTEST_COMBINATIONS(8, test_execute_reduction, float, 5);

  CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 2);
  CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 3);
  CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 4);
  CALL_SUBTEST_COMBINATIONS(9, test_execute_reshape, float, 5);

  CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 2);
  CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 3);
  CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 4);
  CALL_SUBTEST_COMBINATIONS(10, test_execute_slice_rvalue, float, 5);

  CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 2);
  CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 3);
  CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 4);
  CALL_SUBTEST_COMBINATIONS(11, test_execute_slice_lvalue, float, 5);

  CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 2);
  CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 3);
  CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 4);
  CALL_SUBTEST_COMBINATIONS(12, test_execute_broadcasting_of_forced_eval, float, 5);

  CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 2);
  CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 3);
  CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 4);
  CALL_SUBTEST_COMBINATIONS(13, test_execute_generator_op, float, 5);

  // Force CMake to split this test.
  // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8;9;10;11;12;13
}

#undef CALL_SUBTEST_COMBINATIONS