1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_device
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::RowMajor;
// Context for evaluation on cpu
struct CPUContext {
CPUContext(const Eigen::Tensor<float, 3>& in1, Eigen::Tensor<float, 3>& in2, Eigen::Tensor<float, 3>& out) : in1_(in1), in2_(in2), out_(out), kernel_1d_(2), kernel_2d_(2,2), kernel_3d_(2,2,2) {
kernel_1d_(0) = 3.14f;
kernel_1d_(1) = 2.7f;
kernel_2d_(0,0) = 3.14f;
kernel_2d_(1,0) = 2.7f;
kernel_2d_(0,1) = 0.2f;
kernel_2d_(1,1) = 7.0f;
kernel_3d_(0,0,0) = 3.14f;
kernel_3d_(0,1,0) = 2.7f;
kernel_3d_(0,0,1) = 0.2f;
kernel_3d_(0,1,1) = 7.0f;
kernel_3d_(1,0,0) = -1.0f;
kernel_3d_(1,1,0) = -0.3f;
kernel_3d_(1,0,1) = -0.7f;
kernel_3d_(1,1,1) = -0.5f;
}
const Eigen::DefaultDevice& device() const { return cpu_device_; }
const Eigen::Tensor<float, 3>& in1() const { return in1_; }
const Eigen::Tensor<float, 3>& in2() const { return in2_; }
Eigen::Tensor<float, 3>& out() { return out_; }
const Eigen::Tensor<float, 1>& kernel1d() const { return kernel_1d_; }
const Eigen::Tensor<float, 2>& kernel2d() const { return kernel_2d_; }
const Eigen::Tensor<float, 3>& kernel3d() const { return kernel_3d_; }
private:
const Eigen::Tensor<float, 3>& in1_;
const Eigen::Tensor<float, 3>& in2_;
Eigen::Tensor<float, 3>& out_;
Eigen::Tensor<float, 1> kernel_1d_;
Eigen::Tensor<float, 2> kernel_2d_;
Eigen::Tensor<float, 3> kernel_3d_;
Eigen::DefaultDevice cpu_device_;
};
// Context for evaluation on GPU
struct GPUContext {
GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1, Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2, Eigen::TensorMap<Eigen::Tensor<float, 3> >& out) : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) {
assert(cudaMalloc((void**)(&kernel_1d_), 2*sizeof(float)) == cudaSuccess);
float kernel_1d_val[] = {3.14f, 2.7f};
assert(cudaMemcpy(kernel_1d_, kernel_1d_val, 2*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(cudaMalloc((void**)(&kernel_2d_), 4*sizeof(float)) == cudaSuccess);
float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f};
assert(cudaMemcpy(kernel_2d_, kernel_2d_val, 4*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
assert(cudaMalloc((void**)(&kernel_3d_), 8*sizeof(float)) == cudaSuccess);
float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f};
assert(cudaMemcpy(kernel_3d_, kernel_3d_val, 8*sizeof(float), cudaMemcpyHostToDevice) == cudaSuccess);
}
~GPUContext() {
assert(cudaFree(kernel_1d_) == cudaSuccess);
assert(cudaFree(kernel_2d_) == cudaSuccess);
assert(cudaFree(kernel_3d_) == cudaSuccess);
}
const Eigen::GpuDevice& device() const { return gpu_device_; }
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1() const { return in1_; }
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2() const { return in2_; }
Eigen::TensorMap<Eigen::Tensor<float, 3> >& out() { return out_; }
Eigen::TensorMap<Eigen::Tensor<float, 1> > kernel1d() const { return Eigen::TensorMap<Eigen::Tensor<float, 1> >(kernel_1d_, 2); }
Eigen::TensorMap<Eigen::Tensor<float, 2> > kernel2d() const { return Eigen::TensorMap<Eigen::Tensor<float, 2> >(kernel_2d_, 2, 2); }
Eigen::TensorMap<Eigen::Tensor<float, 3> > kernel3d() const { return Eigen::TensorMap<Eigen::Tensor<float, 3> >(kernel_3d_, 2, 2, 2); }
private:
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in1_;
const Eigen::TensorMap<Eigen::Tensor<float, 3> >& in2_;
Eigen::TensorMap<Eigen::Tensor<float, 3> >& out_;
float* kernel_1d_;
float* kernel_2d_;
float* kernel_3d_;
Eigen::CudaStreamDevice stream_;
Eigen::GpuDevice gpu_device_;
};
// The actual expression to evaluate
template <typename Context>
void test_contextual_eval(Context* context)
{
context->out().device(context->device()) = context->in1() + context->in2() * 3.14f + context->in1().constant(2.718f);
}
template <typename Context>
void test_forced_contextual_eval(Context* context)
{
context->out().device(context->device()) = (context->in1() + context->in2()).eval() * 3.14f + context->in1().constant(2.718f);
}
template <typename Context>
void test_compound_assignment(Context* context)
{
context->out().device(context->device()) = context->in1().constant(2.718f);
context->out().device(context->device()) += context->in1() + context->in2() * 3.14f;
}
template <typename Context>
void test_contraction(Context* context)
{
Eigen::array<std::pair<int, int>, 2> dims;
dims[0] = std::make_pair(1, 1);
dims[1] = std::make_pair(2, 2);
Eigen::array<int, 2> shape(40, 50*70);
Eigen::DSizes<int, 2> indices(0,0);
Eigen::DSizes<int, 2> sizes(40,40);
context->out().reshape(shape).slice(indices, sizes).device(context->device()) = context->in1().contract(context->in2(), dims);
}
template <typename Context>
void test_1d_convolution(Context* context)
{
Eigen::DSizes<int, 3> indices(0,0,0);
Eigen::DSizes<int, 3> sizes(40,49,70);
Eigen::array<int, 1> dims(1);
context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel1d(), dims);
}
template <typename Context>
void test_2d_convolution(Context* context)
{
Eigen::DSizes<int, 3> indices(0,0,0);
Eigen::DSizes<int, 3> sizes(40,49,69);
Eigen::array<int, 2> dims(1,2);
context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel2d(), dims);
}
template <typename Context>
void test_3d_convolution(Context* context)
{
Eigen::DSizes<int, 3> indices(0,0,0);
Eigen::DSizes<int, 3> sizes(39,49,69);
Eigen::array<int, 3> dims(0,1,2);
context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel3d(), dims);
}
void test_cpu() {
Eigen::Tensor<float, 3> in1(40,50,70);
Eigen::Tensor<float, 3> in2(40,50,70);
Eigen::Tensor<float, 3> out(40,50,70);
in1 = in1.random() + in1.constant(10.0f);
in2 = in2.random() + in2.constant(10.0f);
CPUContext context(in1, in2, out);
test_contextual_eval(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_forced_contextual_eval(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f);
}
}
}
test_compound_assignment(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_contraction(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 40; ++j) {
const float result = out(i,j,0);
float expected = 0;
for (int k = 0; k < 50; ++k) {
for (int l = 0; l < 70; ++l) {
expected += in1(i, k, l) * in2(j, k, l);
}
}
VERIFY_IS_APPROX(expected, result);
}
}
test_1d_convolution(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f));
}
}
}
test_2d_convolution(&context);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f) +
(in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f);
if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) {
continue;
}
VERIFY_IS_APPROX(expected, result);
}
}
}
test_3d_convolution(&context);
for (int i = 0; i < 39; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f) +
(in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f +
in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f);
if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) {
continue;
}
VERIFY_IS_APPROX(expected, result);
}
}
}
}
void test_gpu() {
Eigen::Tensor<float, 3> in1(40,50,70);
Eigen::Tensor<float, 3> in2(40,50,70);
Eigen::Tensor<float, 3> out(40,50,70);
in1 = in1.random() + in1.constant(10.0f);
in2 = in2.random() + in2.constant(10.0f);
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t in2_bytes = in2.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_in2;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, 40,50,70);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, 40,50,70);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, 40,50,70);
GPUContext context(gpu_in1, gpu_in2, gpu_out);
test_contextual_eval(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_forced_contextual_eval(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) + in2(i,j,k)) * 3.14f + 2.718f);
}
}
}
test_compound_assignment(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 50; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k) * 3.14f + 2.718f);
}
}
}
test_contraction(&context);
assert(cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 40; ++j) {
const float result = out(i,j,0);
float expected = 0;
for (int k = 0; k < 50; ++k) {
for (int l = 0; l < 70; ++l) {
expected += in1(i, k, l) * in2(j, k, l);
}
}
VERIFY_IS_APPROX(expected, result);
}
}
test_1d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 70; ++k) {
VERIFY_IS_APPROX(out(i,j,k), (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f));
}
}
}
test_2d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
for (int i = 0; i < 40; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f);
VERIFY_IS_APPROX(expected, result);
}
}
}
test_3d_convolution(&context);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, context.device().stream()) == cudaSuccess);
assert(cudaStreamSynchronize(context.device().stream()) == cudaSuccess);
for (int i = 0; i < 39; ++i) {
for (int j = 0; j < 49; ++j) {
for (int k = 0; k < 69; ++k) {
const float result = out(i,j,k);
const float expected = (in1(i,j,k) * 3.14f + in1(i,j+1,k) * 2.7f +
in1(i,j,k+1) * 0.2f + in1(i,j+1,k+1) * 7.0f +
in1(i+1,j,k) * -1.0f + in1(i+1,j+1,k) * -0.3f +
in1(i+1,j,k+1) * -0.7f + in1(i+1,j+1,k+1) * -0.5f);
VERIFY_IS_APPROX(expected, result);
}
}
}
}
void test_cxx11_tensor_device()
{
CALL_SUBTEST_1(test_cpu());
CALL_SUBTEST_2(test_gpu());
}
|