1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::DefaultDevice;
template <int DataLayout>
static void test_evals()
{
Tensor<float, 2, DataLayout> input(3, 3);
Tensor<float, 1, DataLayout> kernel(2);
input.setRandom();
kernel.setRandom();
Tensor<float, 2, DataLayout> result(2,3);
result.setZero();
Eigen::array<Tensor<float, 2>::Index, 1> dims3{{0}};
typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator;
Evaluator eval(input.convolve(kernel, dims3), DefaultDevice());
eval.evalTo(result.data());
EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE);
VERIFY_IS_EQUAL(eval.dimensions()[0], 2);
VERIFY_IS_EQUAL(eval.dimensions()[1], 3);
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
}
template <int DataLayout>
static void test_expr()
{
Tensor<float, 2, DataLayout> input(3, 3);
Tensor<float, 2, DataLayout> kernel(2, 2);
input.setRandom();
kernel.setRandom();
Tensor<float, 2, DataLayout> result(2,2);
Eigen::array<ptrdiff_t, 2> dims;
dims[0] = 0;
dims[1] = 1;
result = input.convolve(kernel, dims);
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
}
template <int DataLayout>
static void test_modes() {
Tensor<float, 1, DataLayout> input(3);
Tensor<float, 1, DataLayout> kernel(3);
input(0) = 1.0f;
input(1) = 2.0f;
input(2) = 3.0f;
kernel(0) = 0.5f;
kernel(1) = 1.0f;
kernel(2) = 0.0f;
Eigen::array<ptrdiff_t, 1> dims;
dims[0] = 0;
Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding;
// Emulate VALID mode (as defined in
// http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
padding[0] = std::make_pair(0, 0);
Tensor<float, 1, DataLayout> valid(1);
valid = input.pad(padding).convolve(kernel, dims);
VERIFY_IS_EQUAL(valid.dimension(0), 1);
VERIFY_IS_APPROX(valid(0), 2.5f);
// Emulate SAME mode (as defined in
// http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
padding[0] = std::make_pair(1, 1);
Tensor<float, 1, DataLayout> same(3);
same = input.pad(padding).convolve(kernel, dims);
VERIFY_IS_EQUAL(same.dimension(0), 3);
VERIFY_IS_APPROX(same(0), 1.0f);
VERIFY_IS_APPROX(same(1), 2.5f);
VERIFY_IS_APPROX(same(2), 4.0f);
// Emulate FULL mode (as defined in
// http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
padding[0] = std::make_pair(2, 2);
Tensor<float, 1, DataLayout> full(5);
full = input.pad(padding).convolve(kernel, dims);
VERIFY_IS_EQUAL(full.dimension(0), 5);
VERIFY_IS_APPROX(full(0), 0.0f);
VERIFY_IS_APPROX(full(1), 1.0f);
VERIFY_IS_APPROX(full(2), 2.5f);
VERIFY_IS_APPROX(full(3), 4.0f);
VERIFY_IS_APPROX(full(4), 1.5f);
}
template <int DataLayout>
static void test_strides() {
Tensor<float, 1, DataLayout> input(13);
Tensor<float, 1, DataLayout> kernel(3);
input.setRandom();
kernel.setRandom();
Eigen::array<ptrdiff_t, 1> dims;
dims[0] = 0;
Eigen::array<ptrdiff_t, 1> stride_of_3;
stride_of_3[0] = 3;
Eigen::array<ptrdiff_t, 1> stride_of_2;
stride_of_2[0] = 2;
Tensor<float, 1, DataLayout> result;
result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2);
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) +
input(6)*kernel(2)));
VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) +
input(12)*kernel(2)));
}
void test_cxx11_tensor_convolution()
{
CALL_SUBTEST(test_evals<ColMajor>());
CALL_SUBTEST(test_evals<RowMajor>());
CALL_SUBTEST(test_expr<ColMajor>());
CALL_SUBTEST(test_expr<RowMajor>());
CALL_SUBTEST(test_modes<ColMajor>());
CALL_SUBTEST(test_modes<RowMajor>());
CALL_SUBTEST(test_strides<ColMajor>());
CALL_SUBTEST(test_strides<RowMajor>());
}
|