aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_block_eval.cpp
blob: e85b81141edca2ac1541b7a0c055e19cdcd4a043 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// clang-format off
#include "main.h"
#include <Eigen/CXX11/Tensor>
// clang-format on

using Eigen::internal::TensorBlockDescriptor;
using Eigen::internal::TensorExecutor;

// -------------------------------------------------------------------------- //
// Utility functions to generate random tensors, blocks, and evaluate them.

template <int NumDims>
static DSizes<Index, NumDims> RandomDims(Index min, Index max) {
  DSizes<Index, NumDims> dims;
  for (int i = 0; i < NumDims; ++i) {
    dims[i] = internal::random<Index>(min, max);
  }
  return DSizes<Index, NumDims>(dims);
}

// Block offsets and extents allows to construct a TensorSlicingOp corresponding
// to a TensorBlockDescriptor.
template <int NumDims>
struct TensorBlockParams {
  DSizes<Index, NumDims> offsets;
  DSizes<Index, NumDims> sizes;
  TensorBlockDescriptor<NumDims, Index> desc;
};

template <int Layout, int NumDims>
static TensorBlockParams<NumDims> RandomBlock(DSizes<Index, NumDims> dims,
                                              Index min, Index max) {
  // Choose random offsets and sizes along all tensor dimensions.
  DSizes<Index, NumDims> offsets(RandomDims<NumDims>(min, max));
  DSizes<Index, NumDims> sizes(RandomDims<NumDims>(min, max));

  // Make sure that offset + size do not overflow dims.
  for (int i = 0; i < NumDims; ++i) {
    offsets[i] = numext::mini(dims[i] - 1, offsets[i]);
    sizes[i] = numext::mini(sizes[i], dims[i] - offsets[i]);
  }

  Index offset = 0;
  DSizes<Index, NumDims> strides = Eigen::internal::strides<Layout>(dims);
  for (int i = 0; i < NumDims; ++i) {
    offset += strides[i] * offsets[i];
  }

  return {offsets, sizes, TensorBlockDescriptor<NumDims, Index>(offset, sizes)};
}

// Generate block with block sizes skewed towards inner dimensions. This type of
// block is required for evaluating broadcast expressions.
template <int Layout, int NumDims>
static TensorBlockParams<NumDims> SkewedInnerBlock(
    DSizes<Index, NumDims> dims) {
  using BlockMapper = internal::TensorBlockMapper<int, Index, NumDims, Layout>;
  BlockMapper block_mapper(dims,
                           internal::TensorBlockShapeType::kSkewedInnerDims,
                           internal::random<Index>(1, dims.TotalSize()));

  Index total_blocks = block_mapper.total_block_count();
  Index block_index = internal::random<Index>(0, total_blocks - 1);
  auto block = block_mapper.GetBlockForIndex(block_index, nullptr);
  DSizes<Index, NumDims> sizes = block.block_sizes();

  auto strides = internal::strides<Layout>(dims);
  DSizes<Index, NumDims> offsets;

  // Compute offsets for the first block coefficient.
  Index index = block.first_coeff_index();
  if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
    for (int i = NumDims - 1; i > 0; --i) {
      const Index idx = index / strides[i];
      index -= idx * strides[i];
      offsets[i] = idx;
    }
    offsets[0] = index;
  } else {
    for (int i = 0; i < NumDims - 1; ++i) {
      const Index idx = index / strides[i];
      index -= idx * strides[i];
      offsets[i] = idx;
    }
    offsets[NumDims - 1] = index;
  }

  auto desc = TensorBlockDescriptor<NumDims>(block.first_coeff_index(), sizes);
  return {offsets, sizes, desc};
}

template <int NumDims>
static TensorBlockParams<NumDims> FixedSizeBlock(DSizes<Index, NumDims> dims) {
  DSizes<Index, NumDims> offsets;
  for (int i = 0; i < NumDims; ++i) offsets[i] = 0;

  return {offsets, dims, TensorBlockDescriptor<NumDims, Index>(0, dims)};
}

// -------------------------------------------------------------------------- //
// Verify that block expression evaluation produces the same result as a
// TensorSliceOp (reading a tensor block is same to taking a tensor slice).

template <typename T, int NumDims, int Layout, typename Expression,
          typename GenBlockParams>
static void VerifyBlockEvaluator(Expression expr, GenBlockParams gen_block) {
  using Device = DefaultDevice;
  auto d = Device();

  // Scratch memory allocator for block evaluation.
  typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
  TensorBlockScratch scratch(d);

  // TensorEvaluator is needed to produce tensor blocks of the expression.
  auto eval = TensorEvaluator<const decltype(expr), Device>(expr, d);

  // Choose a random offsets, sizes and TensorBlockDescriptor.
  TensorBlockParams<NumDims> block_params = gen_block();

  // Evaluate TensorBlock expression into a tensor.
  Tensor<T, NumDims, Layout> block(block_params.desc.dimensions());

  // Maybe use this tensor as a block desc destination.
  Tensor<T, NumDims, Layout> dst(block_params.desc.dimensions());
  if (internal::random<bool>()) {
    block_params.desc.template AddDestinationBuffer(
        dst.data(), internal::strides<Layout>(dst.dimensions()),
        dst.dimensions().TotalSize() * sizeof(T));
  }

  auto tensor_block = eval.blockV2(block_params.desc, scratch);
  auto b_expr = tensor_block.expr();

  // We explicitly disable vectorization and tiling, to run a simple coefficient
  // wise assignment loop, because it's very simple and should be correct.
  using BlockAssign = TensorAssignOp<decltype(block), const decltype(b_expr)>;
  using BlockExecutor = TensorExecutor<const BlockAssign, Device, false,
                                       internal::TiledEvaluation::Off>;
  BlockExecutor::run(BlockAssign(block, b_expr), d);

  // Cleanup temporary buffers owned by a tensor block.
  tensor_block.cleanup();

  // Compute a Tensor slice corresponding to a Tensor block.
  Tensor<T, NumDims, Layout> slice(block_params.desc.dimensions());
  auto s_expr = expr.slice(block_params.offsets, block_params.sizes);

  // Explicitly use coefficient assignment to evaluate slice expression.
  using SliceAssign = TensorAssignOp<decltype(slice), const decltype(s_expr)>;
  using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
                                       internal::TiledEvaluation::Off>;
  SliceExecutor::run(SliceAssign(slice, s_expr), d);

  // Tensor block and tensor slice must be the same.
  for (Index i = 0; i < block.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(block.coeff(i), slice.coeff(i));
  }
}

// -------------------------------------------------------------------------- //

template <typename T, int NumDims, int Layout>
static void test_eval_tensor_block() {
  DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
  Tensor<T, NumDims, Layout> input(dims);
  input.setRandom();

  // Identity tensor expression transformation.
  VerifyBlockEvaluator<T, NumDims, Layout>(
      input, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
}

template <typename T, int NumDims, int Layout>
static void test_eval_tensor_unary_expr_block() {
  DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
  Tensor<T, NumDims, Layout> input(dims);
  input.setRandom();

  VerifyBlockEvaluator<T, NumDims, Layout>(
      input.square(), [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
}

template <typename T, int NumDims, int Layout>
static void test_eval_tensor_binary_expr_block() {
  DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
  Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
  lhs.setRandom();
  rhs.setRandom();

  VerifyBlockEvaluator<T, NumDims, Layout>(
      lhs + rhs, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
}

template <typename T, int NumDims, int Layout>
static void test_eval_tensor_binary_with_unary_expr_block() {
  DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
  Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
  lhs.setRandom();
  rhs.setRandom();

  VerifyBlockEvaluator<T, NumDims, Layout>(
      (lhs.square() + rhs.square()).sqrt(),
      [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
}

template <typename T, int NumDims, int Layout>
static void test_eval_tensor_broadcast() {
  DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
  Tensor<T, NumDims, Layout> input(dims);
  input.setRandom();

  DSizes<Index, NumDims> bcast = RandomDims<NumDims>(1, 5);

  DSizes<Index, NumDims> bcasted_dims;
  for (int i = 0; i < NumDims; ++i) bcasted_dims[i] = dims[i] * bcast[i];

  VerifyBlockEvaluator<T, NumDims, Layout>(
      input.broadcast(bcast),
      [&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });

  VerifyBlockEvaluator<T, NumDims, Layout>(
      input.broadcast(bcast),
      [&bcasted_dims]() { return FixedSizeBlock(bcasted_dims); });

  // Check that desc.destination() memory is not shared between two broadcast
  // materializations.
  VerifyBlockEvaluator<T, NumDims, Layout>(
      input.broadcast(bcast) + input.square().broadcast(bcast),
      [&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
}

// -------------------------------------------------------------------------- //
// Verify that assigning block to a Tensor expression produces the same result
// as an assignment to TensorSliceOp (writing a block is is identical to
// assigning one tensor to a slice of another tensor).

template <typename T, int NumDims, int Layout, typename Expression,
          typename GenBlockParams>
static void VerifyBlockAssignment(Tensor<T, NumDims, Layout>& tensor,
                                  Expression expr, GenBlockParams gen_block) {
  using Device = DefaultDevice;
  auto d = Device();

  // We use tensor evaluator as a target for block and slice assignments.
  auto eval = TensorEvaluator<decltype(expr), Device>(expr, d);

  // Generate a random block, or choose a block that fits in full expression.
  TensorBlockParams<NumDims> block_params = gen_block();

  // Generate random data of the selected block size.
  Tensor<T, NumDims, Layout> block(block_params.desc.dimensions());
  block.setRandom();

  // ************************************************************************ //
  // (1) Assignment from a block.

  // Construct a materialize block from a random generated block tensor.
  internal::TensorMaterializedBlock<T, NumDims, Layout> blk(
      internal::TensorBlockKind::kView, block.data(), block.dimensions());

  // Reset all underlying tensor values to zero.
  tensor.setZero();

  // Use evaluator to write block into a tensor.
  eval.writeBlockV2(block_params.desc, blk);

  // Make a copy of the result after assignment.
  Tensor<T, NumDims, Layout> block_assigned = tensor;

  // ************************************************************************ //
  // (2) Assignment to a slice

  // Reset all underlying tensor values to zero.
  tensor.setZero();

  // Assign block to a slice of original expression
  auto s_expr = expr.slice(block_params.offsets, block_params.sizes);

  // Explicitly use coefficient assignment to evaluate slice expression.
  using SliceAssign = TensorAssignOp<decltype(s_expr), const decltype(block)>;
  using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
                                       internal::TiledEvaluation::Off>;
  SliceExecutor::run(SliceAssign(s_expr, block), d);

  // Make a copy of the result after assignment.
  Tensor<T, NumDims, Layout> slice_assigned = tensor;

  for (Index i = 0; i < tensor.dimensions().TotalSize(); ++i) {
    VERIFY_IS_EQUAL(block_assigned.coeff(i), slice_assigned.coeff(i));
  }
}

// -------------------------------------------------------------------------- //

template <typename T, int NumDims, int Layout>
static void test_assign_tensor_block() {
  DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
  Tensor<T, NumDims, Layout> tensor(dims);

  TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);

  VerifyBlockAssignment<T, NumDims, Layout>(
      tensor, map, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
  VerifyBlockAssignment<T, NumDims, Layout>(
      tensor, map, [&dims]() { return FixedSizeBlock(dims); });
}

// -------------------------------------------------------------------------- //

//#define CALL_SUBTESTS(NAME) CALL_SUBTEST((NAME<float, 2, RowMajor>()))

#define CALL_SUBTESTS(NAME)                   \
  CALL_SUBTEST((NAME<float, 1, RowMajor>())); \
  CALL_SUBTEST((NAME<float, 2, RowMajor>())); \
  CALL_SUBTEST((NAME<float, 4, RowMajor>())); \
  CALL_SUBTEST((NAME<float, 5, RowMajor>())); \
  CALL_SUBTEST((NAME<float, 1, ColMajor>())); \
  CALL_SUBTEST((NAME<float, 2, ColMajor>())); \
  CALL_SUBTEST((NAME<float, 4, ColMajor>())); \
  CALL_SUBTEST((NAME<float, 5, ColMajor>()))

EIGEN_DECLARE_TEST(cxx11_tensor_block_eval) {
  // clang-format off
  CALL_SUBTESTS(test_eval_tensor_block);
  CALL_SUBTESTS(test_eval_tensor_unary_expr_block);
  CALL_SUBTESTS(test_eval_tensor_binary_expr_block);
  CALL_SUBTESTS(test_eval_tensor_binary_with_unary_expr_block);
  CALL_SUBTESTS(test_eval_tensor_broadcast);

  CALL_SUBTESTS(test_assign_tensor_block);
  // clang-format on
}