aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/FFT.cpp
blob: 28230e1c45b97f6bcbea5d9983e7f0b689addcf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "main.h"
//#define USE_FFTW
#ifdef USE_FFTW
#include <fftw3.h>
#endif

#include <unsupported/Eigen/FFT>

using namespace std;

float norm(float x) {return x*x;}
double norm(double x) {return x*x;}
long double norm(long double x) {return x*x;}

template < typename T>
complex<long double>  promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }

complex<long double>  promote(float x) { return complex<long double>( x); }
complex<long double>  promote(double x) { return complex<long double>( x); }
complex<long double>  promote(long double x) { return complex<long double>( x); }
    

    template <typename T1,typename T2>
    long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
    {
        long double totalpower=0;
        long double difpower=0;
        cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
        for (size_t k0=0;k0<fftbuf.size();++k0) {
            complex<long double> acc = 0;
            long double phinc = -2.*k0* M_PIl / timebuf.size();
            for (size_t k1=0;k1<timebuf.size();++k1) {
                acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
            }
            totalpower += norm(acc);
            complex<long double> x = promote(fftbuf[k0]); 
            complex<long double> dif = acc - x;
            difpower += norm(dif);
            cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(norm(dif)) << endl;
        }
        cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
        return sqrt(difpower/totalpower);
    }

    template <typename T1,typename T2>
    long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
    {
        long double totalpower=0;
        long double difpower=0;
        size_t n = min( buf1.size(),buf2.size() );
        for (size_t k=0;k<n;++k) {
            totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
            difpower += norm(buf1[k] - buf2[k]);
        }
        return sqrt(difpower/totalpower);
    }

template <class T>
void test_scalar(int nfft)
{
    typedef typename Eigen::FFT<T>::Complex Complex;
    typedef typename Eigen::FFT<T>::Scalar Scalar;

    FFT<T> fft;
    vector<Scalar> inbuf(nfft);
    vector<Complex> outbuf;
    for (int k=0;k<nfft;++k)
        inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
    fft.fwd( outbuf,inbuf);
    VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check

    vector<Scalar> buf3;
    fft.inv( buf3 , outbuf);
    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
}

template <class T>
void test_complex(int nfft)
{
    typedef typename Eigen::FFT<T>::Complex Complex;

    FFT<T> fft;

    vector<Complex> inbuf(nfft);
    vector<Complex> outbuf;
    vector<Complex> buf3;
    for (int k=0;k<nfft;++k)
        inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
    fft.fwd( outbuf , inbuf);

    VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check

    fft.inv( buf3 , outbuf);

    VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check
}

void test_FFT()
{
#if 1
  CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
  CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
  CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
  CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) );
  CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) );
  CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
  CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
#endif

#if 1
  CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
  CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
  CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
  CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) );
  CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
#endif
}