aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/EulerAngles.cpp
blob: 79ee72847989ceae656922acab092c55ac7a03d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

#include <unsupported/Eigen/EulerAngles>

using namespace Eigen;

// Unfortunately, we need to specialize it in order to work. (We could add it in main.h test framework)
template <typename Scalar, class System>
bool verifyIsApprox(const Eigen::EulerAngles<Scalar, System>& a, const Eigen::EulerAngles<Scalar, System>& b)
{
  return verifyIsApprox(a.angles(), b.angles());
}

// Verify that x is in the approxed range [a, b]
#define VERIFY_APPROXED_RANGE(a, x, b) \
  do { \
  VERIFY_IS_APPROX_OR_LESS_THAN(a, x); \
  VERIFY_IS_APPROX_OR_LESS_THAN(x, b); \
  } while(0)

const char X = EULER_X;
const char Y = EULER_Y;
const char Z = EULER_Z;

template<typename Scalar, class EulerSystem>
void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
{
  typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;
  typedef AngleAxis<Scalar> AngleAxisType;
  
  const Scalar ONE = Scalar(1);
  const Scalar HALF_PI = Scalar(EIGEN_PI / 2);
  const Scalar PI = Scalar(EIGEN_PI);
  
  // It's very important calc the acceptable precision depending on the distance from the pole.
  const Scalar longitudeRadius = std::abs(
    EulerSystem::IsTaitBryan ?
    std::cos(e.beta()) :
    std::sin(e.beta())
    );
  Scalar precision = test_precision<Scalar>() / longitudeRadius;
  
  Scalar betaRangeStart, betaRangeEnd;
  if (EulerSystem::IsTaitBryan)
  {
    betaRangeStart = -HALF_PI;
    betaRangeEnd = HALF_PI;
  }
  else
  {
    if (!EulerSystem::IsBetaOpposite)
    {
      betaRangeStart = 0;
      betaRangeEnd = PI;
    }
    else
    {
      betaRangeStart = -PI;
      betaRangeEnd = 0;
    }
  }
  
  const Vector3 I = EulerAnglesType::AlphaAxisVector();
  const Vector3 J = EulerAnglesType::BetaAxisVector();
  const Vector3 K = EulerAnglesType::GammaAxisVector();
  
  // Is approx checks
  VERIFY(e.isApprox(e));
  VERIFY_IS_APPROX(e, e);
  VERIFY_IS_NOT_APPROX(e, EulerAnglesType(e.alpha() + ONE, e.beta() + ONE, e.gamma() + ONE));

  const Matrix3 m(e);
  VERIFY_IS_APPROX(Scalar(m.determinant()), ONE);

  EulerAnglesType ebis(m);
  
  // When no roll(acting like polar representation), we have the best precision.
  // One of those cases is when the Euler angles are on the pole, and because it's singular case,
  //  the computation returns no roll.
  if (ebis.beta() == 0)
    precision = test_precision<Scalar>();
  
  // Check that eabis in range
  VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI);
  VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd);
  VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI);

  const Matrix3 mbis(AngleAxisType(ebis.alpha(), I) * AngleAxisType(ebis.beta(), J) * AngleAxisType(ebis.gamma(), K));
  VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE);
  VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix());
  /*std::cout << "===================\n" <<
    "e: " << e << std::endl <<
    "eabis: " << eabis.transpose() << std::endl <<
    "m: " << m << std::endl <<
    "mbis: " << mbis << std::endl <<
    "X: " << (m * Vector3::UnitX()).transpose() << std::endl <<
    "X: " << (mbis * Vector3::UnitX()).transpose() << std::endl;*/
  VERIFY(m.isApprox(mbis, precision));

  // Test if ea and eabis are the same
  // Need to check both singular and non-singular cases
  // There are two singular cases.
  // 1. When I==K and sin(ea(1)) == 0
  // 2. When I!=K and cos(ea(1)) == 0

  // TODO: Make this test work well, and use range saturation function.
  /*// If I==K, and ea[1]==0, then there no unique solution.
  // The remark apply in the case where I!=K, and |ea[1]| is close to +-pi/2.
  if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) ) 
      VERIFY_IS_APPROX(ea, eabis);*/
  
  // Quaternions
  const QuaternionType q(e);
  ebis = q;
  const QuaternionType qbis(ebis);
  VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision));
  //VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
  
  // A suggestion for simple product test when will be supported.
  /*EulerAnglesType e2(PI/2, PI/2, PI/2);
  Matrix3 m2(e2);
  VERIFY_IS_APPROX(e*e2, m*m2);*/
}

template<signed char A, signed char B, signed char C, typename Scalar>
void verify_euler_vec(const Matrix<Scalar,3,1>& ea)
{
  verify_euler(EulerAngles<Scalar, EulerSystem<A, B, C> >(ea[0], ea[1], ea[2]));
}

template<signed char A, signed char B, signed char C, typename Scalar>
void verify_euler_all_neg(const Matrix<Scalar,3,1>& ea)
{
  verify_euler_vec<+A,+B,+C>(ea);
  verify_euler_vec<+A,+B,-C>(ea);
  verify_euler_vec<+A,-B,+C>(ea);
  verify_euler_vec<+A,-B,-C>(ea);
  
  verify_euler_vec<-A,+B,+C>(ea);
  verify_euler_vec<-A,+B,-C>(ea);
  verify_euler_vec<-A,-B,+C>(ea);
  verify_euler_vec<-A,-B,-C>(ea);
}

template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
{
  verify_euler_all_neg<X,Y,Z>(ea);
  verify_euler_all_neg<X,Y,X>(ea);
  verify_euler_all_neg<X,Z,Y>(ea);
  verify_euler_all_neg<X,Z,X>(ea);
  
  verify_euler_all_neg<Y,Z,X>(ea);
  verify_euler_all_neg<Y,Z,Y>(ea);
  verify_euler_all_neg<Y,X,Z>(ea);
  verify_euler_all_neg<Y,X,Y>(ea);
  
  verify_euler_all_neg<Z,X,Y>(ea);
  verify_euler_all_neg<Z,X,Z>(ea);
  verify_euler_all_neg<Z,Y,X>(ea);
  verify_euler_all_neg<Z,Y,Z>(ea);
}

template<typename Scalar> void check_singular_cases(const Scalar& singularBeta)
{
  typedef Matrix<Scalar,3,1> Vector3;
  const Scalar PI = Scalar(EIGEN_PI);
  
  for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2))
  {
    check_all_var(Vector3(PI/4, singularBeta, PI/3));
    check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3));
    check_all_var(Vector3(PI/4, singularBeta - Scalar(1.5)*epsilon, PI/3));
    check_all_var(Vector3(PI/4, singularBeta - 2*epsilon, PI/3));
    check_all_var(Vector3(PI*Scalar(0.8), singularBeta - epsilon, Scalar(0.9)*PI));
    check_all_var(Vector3(PI*Scalar(-0.9), singularBeta + epsilon, PI*Scalar(0.3)));
    check_all_var(Vector3(PI*Scalar(-0.6), singularBeta + Scalar(1.5)*epsilon, PI*Scalar(0.3)));
    check_all_var(Vector3(PI*Scalar(-0.5), singularBeta + 2*epsilon, PI*Scalar(0.4)));
    check_all_var(Vector3(PI*Scalar(0.9), singularBeta + epsilon, Scalar(0.8)*PI));
  }
  
  // This one for sanity, it had a problem with near pole cases in float scalar.
  check_all_var(Vector3(PI*Scalar(0.8), singularBeta - Scalar(1E-6), Scalar(0.9)*PI));
}

template<typename Scalar> void eulerangles_manual()
{
  typedef Matrix<Scalar,3,1> Vector3;
  const Vector3 Zero = Vector3::Zero();
  const Scalar PI = Scalar(EIGEN_PI);
  
  check_all_var(Zero);
  
  // singular cases
  check_singular_cases(PI/2);
  check_singular_cases(-PI/2);
  
  check_singular_cases(Scalar(0));
  check_singular_cases(Scalar(-0));
  
  check_singular_cases(PI);
  check_singular_cases(-PI);
  
  // non-singular cases
  VectorXd alpha = VectorXd::LinSpaced(Eigen::Sequential, 20, Scalar(-0.99) * PI, PI);
  VectorXd beta = VectorXd::LinSpaced(Eigen::Sequential, 20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
  VectorXd gamma = VectorXd::LinSpaced(Eigen::Sequential, 20, Scalar(-0.99) * PI, PI);
  for (int i = 0; i < alpha.size(); ++i) {
    for (int j = 0; j < beta.size(); ++j) {
      for (int k = 0; k < gamma.size(); ++k) {
        check_all_var(Vector3d(alpha(i), beta(j), gamma(k)));
      }
    }
  }
}

template<typename Scalar> void eulerangles_rand()
{
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Array<Scalar,3,1> Array3;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisType;

  Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
  Quaternionx q1;
  q1 = AngleAxisType(a, Vector3::Random().normalized());
  Matrix3 m;
  m = q1;
  
  Vector3 ea = m.eulerAngles(0,1,2);
  check_all_var(ea);
  ea = m.eulerAngles(0,1,0);
  check_all_var(ea);
  
  // Check with purely random Quaternion:
  q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
  m = q1;
  ea = m.eulerAngles(0,1,2);
  check_all_var(ea);
  ea = m.eulerAngles(0,1,0);
  check_all_var(ea);
  
  // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
  ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
  check_all_var(ea);
  
  ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
  check_all_var(ea);
  
  ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
  check_all_var(ea);
  
  ea[1] = 0;
  check_all_var(ea);
  
  ea.head(2).setZero();
  check_all_var(ea);
  
  ea.setZero();
  check_all_var(ea);
}

void test_EulerAngles()
{
  // Simple cast test
  EulerAnglesXYZd onesEd(1, 1, 1);
  EulerAnglesXYZf onesEf = onesEd.cast<float>();
  VERIFY_IS_APPROX(onesEd, onesEf.cast<double>());
  
  CALL_SUBTEST_1( eulerangles_manual<float>() );
  CALL_SUBTEST_2( eulerangles_manual<double>() );
  
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_3( eulerangles_rand<float>() );
    CALL_SUBTEST_4( eulerangles_rand<double>() );
  }
  
  // TODO: Add tests for auto diff
  // TODO: Add tests for complex numbers
}