aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/EulerAngles.cpp
blob: 57a34776add98ef1c6c27ad0fecf6f76df11ba92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

#include <unsupported/Eigen/EulerAngles>

using namespace Eigen;

template<typename EulerSystem, typename Scalar>
void verify_euler(const Matrix<Scalar,3,1>& ea)
{
  typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef AngleAxis<Scalar> AngleAxisx;
  using std::abs;
  
  const int i = EulerSystem::HeadingAxisAbs - 1;
  const int j = EulerSystem::PitchAxisAbs - 1;
  const int k = EulerSystem::RollAxisAbs - 1;
  
  const int iFactor = EulerSystem::IsHeadingOpposite ? -1 : 1;
  const int jFactor = EulerSystem::IsPitchOpposite ? -1 : 1;
  const int kFactor = EulerSystem::IsRollOpposite ? -1 : 1;
  
  const Vector3 I = EulerAnglesType::HeadingAxisVector();
  const Vector3 J = EulerAnglesType::PitchAxisVector();
  const Vector3 K = EulerAnglesType::RollAxisVector();
  
  EulerAnglesType e(ea[0], ea[1], ea[2]);
  
  Matrix3 m(e);
  Vector3 eabis = EulerAnglesType(m).coeffs();
  Vector3 eabis2 = m.eulerAngles(i, j, k);
  eabis2[0] *= iFactor;
  eabis2[1] *= jFactor;
  eabis2[2] *= kFactor;
  
  VERIFY_IS_APPROX(eabis, eabis2);// Verify that our estimation is the same as m.eulerAngles() is
  
  Matrix3 mbis(AngleAxisx(eabis[0], I) * AngleAxisx(eabis[1], J) * AngleAxisx(eabis[2], K));
  VERIFY_IS_APPROX(m,  mbis);
  /* If I==K, and ea[1]==0, then there no unique solution. */ 
  /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ 
  if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) ) 
    VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
  
  // approx_or_less_than does not work for 0
  VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
  VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
  VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
  VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
}

template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
{
  verify_euler<EulerSystemXYZ, Scalar>(ea);
  verify_euler<EulerSystemXYX, Scalar>(ea);
  verify_euler<EulerSystemXZY, Scalar>(ea);
  verify_euler<EulerSystemXZX, Scalar>(ea);
  
  verify_euler<EulerSystemYZX, Scalar>(ea);
  verify_euler<EulerSystemYZY, Scalar>(ea);
  verify_euler<EulerSystemYXZ, Scalar>(ea);
  verify_euler<EulerSystemYXY, Scalar>(ea);
  
  verify_euler<EulerSystemZXY, Scalar>(ea);
  verify_euler<EulerSystemZXZ, Scalar>(ea);
  verify_euler<EulerSystemZYX, Scalar>(ea);
  verify_euler<EulerSystemZYZ, Scalar>(ea);
}

template<typename Scalar> void eulerangles()
{
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Array<Scalar,3,1> Array3;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisx;

  Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
  Quaternionx q1;
  q1 = AngleAxisx(a, Vector3::Random().normalized());
  Matrix3 m;
  m = q1;
  
  Vector3 ea = m.eulerAngles(0,1,2);
  check_all_var(ea);
  ea = m.eulerAngles(0,1,0);
  check_all_var(ea);
  
  // Check with purely random Quaternion:
  q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
  m = q1;
  ea = m.eulerAngles(0,1,2);
  check_all_var(ea);
  ea = m.eulerAngles(0,1,0);
  check_all_var(ea);
  
  // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
  ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
  check_all_var(ea);
  
  ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
  check_all_var(ea);
  
  ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
  check_all_var(ea);
  
  ea[1] = 0;
  check_all_var(ea);
  
  ea.head(2).setZero();
  check_all_var(ea);
  
  ea.setZero();
  check_all_var(ea);
}

void test_EulerAngles()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( eulerangles<float>() );
    CALL_SUBTEST_2( eulerangles<double>() );
  }
}