1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/StdVector>
#include <unsupported/Eigen/BVH>
inline double SQR(double x) { return x * x; }
template<int Dim>
struct Ball
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim)
typedef Matrix<double, Dim, 1> VectorType;
Ball() {}
Ball(const VectorType &c, double r) : center(c), radius(r) {}
VectorType center;
double radius;
};
template<typename Scalar, int Dim> AlignedBox<Scalar, Dim> ei_bounding_box(const Matrix<Scalar, Dim, 1> &v) { return AlignedBox<Scalar, Dim>(v); }
template<int Dim> AlignedBox<double, Dim> ei_bounding_box(const Ball<Dim> &b)
{ return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius); }
template<int Dim>
struct BallPointStuff //this class provides functions to be both an intersector and a minimizer, both for a ball and a point and for two trees
{
typedef double Scalar;
typedef Matrix<double, Dim, 1> VectorType;
typedef Ball<Dim> BallType;
typedef AlignedBox<double, Dim> BoxType;
BallPointStuff() : calls(0), count(0) {}
BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {}
bool intersectVolume(const BoxType &r) { ++calls; return r.contains(p); }
bool intersectObject(const BallType &b) {
++calls;
if((b.center - p).squaredNorm() < SQR(b.radius))
++count;
return false; //continue
}
bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return !(r1.intersection(r2)).isNull(); }
bool intersectVolumeObject(const BoxType &r, const BallType &b) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); }
bool intersectObjectVolume(const BallType &b, const BoxType &r) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); }
bool intersectObjectObject(const BallType &b1, const BallType &b2){
++calls;
if((b1.center - b2.center).norm() < b1.radius + b2.radius)
++count;
return false;
}
bool intersectVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.contains(v); }
bool intersectObjectObject(const BallType &b, const VectorType &v){
++calls;
if((b.center - v).squaredNorm() < SQR(b.radius))
++count;
return false;
}
double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); }
double minimumOnObject(const BallType &b) { ++calls; return std::max(0., (b.center - p).squaredNorm() - SQR(b.radius)); }
double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); }
double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); }
double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR(std::max(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); }
double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); }
double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR(std::max(0., (b.center - v).norm() - b.radius)); }
VectorType p;
int calls;
int count;
};
template<int Dim>
struct TreeTest
{
typedef Matrix<double, Dim, 1> VectorType;
typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList;
typedef Ball<Dim> BallType;
typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList;
typedef AlignedBox<double, Dim> BoxType;
void testIntersect1()
{
BallTypeList b;
for(int i = 0; i < 500; ++i) {
b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.)));
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random();
BallPointStuff<Dim> i1(pt), i2(pt);
for(int i = 0; i < (int)b.size(); ++i)
i1.intersectObject(b[i]);
BVIntersect(tree, i2);
VERIFY(i1.count == i2.count);
}
void testMinimize1()
{
BallTypeList b;
for(int i = 0; i < 500; ++i) {
b.push_back(BallType(VectorType::Random(), 0.01 * ei_random(0., 1.)));
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random();
BallPointStuff<Dim> i1(pt), i2(pt);
double m1 = std::numeric_limits<double>::max(), m2 = m1;
for(int i = 0; i < (int)b.size(); ++i)
m1 = std::min(m1, i1.minimumOnObject(b[i]));
m2 = BVMinimize(tree, i2);
VERIFY_IS_APPROX(m1, m2);
}
void testIntersect2()
{
BallTypeList b;
VectorTypeList v;
for(int i = 0; i < 50; ++i) {
b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.)));
for(int j = 0; j < 3; ++j)
v.push_back(VectorType::Random());
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
for(int i = 0; i < (int)b.size(); ++i)
for(int j = 0; j < (int)v.size(); ++j)
i1.intersectObjectObject(b[i], v[j]);
BVIntersect(tree, vTree, i2);
VERIFY(i1.count == i2.count);
}
void testMinimize2()
{
BallTypeList b;
VectorTypeList v;
for(int i = 0; i < 50; ++i) {
b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * ei_random(0., 1.)));
for(int j = 0; j < 3; ++j)
v.push_back(VectorType::Random());
}
KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
double m1 = std::numeric_limits<double>::max(), m2 = m1;
for(int i = 0; i < (int)b.size(); ++i)
for(int j = 0; j < (int)v.size(); ++j)
m1 = std::min(m1, i1.minimumOnObjectObject(b[i], v[j]));
m2 = BVMinimize(tree, vTree, i2);
VERIFY_IS_APPROX(m1, m2);
}
};
void test_BVH()
{
for(int i = 0; i < g_repeat; i++) {
#ifdef EIGEN_TEST_PART_1
TreeTest<2> test2;
CALL_SUBTEST(test2.testIntersect1());
CALL_SUBTEST(test2.testMinimize1());
CALL_SUBTEST(test2.testIntersect2());
CALL_SUBTEST(test2.testMinimize2());
#endif
#ifdef EIGEN_TEST_PART_2
TreeTest<3> test3;
CALL_SUBTEST(test3.testIntersect1());
CALL_SUBTEST(test3.testMinimize1());
CALL_SUBTEST(test3.testIntersect2());
CALL_SUBTEST(test3.testMinimize2());
#endif
#ifdef EIGEN_TEST_PART_3
TreeTest<4> test4;
CALL_SUBTEST(test4.testIntersect1());
CALL_SUBTEST(test4.testMinimize1());
CALL_SUBTEST(test4.testIntersect2());
CALL_SUBTEST(test4.testMinimize2());
#endif
}
}
|