aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/Splines/SplineFitting.h
blob: 5c7c2e69566eb405022e12a0eb2ce9b242d0fca9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPLINE_FITTING_H
#define EIGEN_SPLINE_FITTING_H

#include <numeric>

#include "SplineFwd.h"

#include <Eigen/QR>

namespace Eigen
{
  /**
   * \brief Computes knot averages.
   * \ingroup Splines_Module
   *
   * The knots are computes as
   * \f{align*}
   *  u_0 & = \hdots = u_p = 0 \\
   *  u_{m-p} & = \hdots = u_{m} = 1 \\
   *  u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p
   * \f}
   * where \f$p\f$ is the degree and \f$m+1\f$ the number knots
   * of the desired interpolating spline.
   *
   * \param[in] parameters The input parameters. During interpolation one for each data point.
   * \param[in] degree The spline degree which is used during the interpolation.
   * \param[out] knots The output knot vector.
   *
   * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
   **/
  template <typename KnotVectorType>
  void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots)
  {
    typedef typename KnotVectorType::Scalar Scalar;

    knots.resize(parameters.size()+degree+1);      

    for (DenseIndex j=1; j<parameters.size()-degree; ++j)
      knots(j+degree) = parameters.segment(j,degree).mean();

    knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1);
    knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1);
  }

  /**
   * \brief Computes chord length parameters which are required for spline interpolation.
   * \ingroup Splines_Module
   *
   * \param[in] pts The data points to which a spline should be fit.
   * \param[out] chord_lengths The resulting chord lenggth vector.
   *
   * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
   **/   
  template <typename PointArrayType, typename KnotVectorType>
  void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths)
  {
    typedef typename KnotVectorType::Scalar Scalar;

    const DenseIndex n = pts.cols();

    // 1. compute the column-wise norms
    chord_lengths.resize(pts.cols());
    chord_lengths[0] = 0;
    chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();

    // 2. compute the partial sums
    std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data());

    // 3. normalize the data
    chord_lengths /= chord_lengths(n-1);
    chord_lengths(n-1) = Scalar(1);
  }

  /**
   * \brief Spline fitting methods.
   * \ingroup Splines_Module
   **/     
  template <typename SplineType>
  struct SplineFitting
  {
    /**
     * \brief Fits an interpolating Spline to the given data points.
     **/
    template <typename PointArrayType>
    static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree);
  };

  template <typename SplineType>
  template <typename PointArrayType>
  SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree)
  {
    typedef typename SplineType::KnotVectorType::Scalar Scalar;      
    typedef typename SplineType::KnotVectorType KnotVectorType;
    typedef typename SplineType::BasisVectorType BasisVectorType;
    typedef typename SplineType::ControlPointVectorType ControlPointVectorType;      

    typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;

    KnotVectorType chord_lengths; // knot parameters
    ChordLengths(pts, chord_lengths);

    KnotVectorType knots;
    KnotAveraging(chord_lengths, degree, knots);

    DenseIndex n = pts.cols();
    MatrixType A = MatrixType::Zero(n,n);
    for (DenseIndex i=1; i<n-1; ++i)
    {
      const DenseIndex span = SplineType::Span(chord_lengths[i], degree, knots);

      // The segment call should somehow be told the spline order at compile time.
      A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(chord_lengths[i], degree, knots);
    }
    A(0,0) = 1.0;
    A(n-1,n-1) = 1.0;

    HouseholderQR<MatrixType> qr(A);

    // Here, we are creating a temporary due to an Eigen issue.
    ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose();

    return SplineType(knots, ctrls);
  }
}

#endif // EIGEN_SPLINE_FITTING_H