1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPLINE_H
#define EIGEN_SPLINE_H
#include "SplineFwd.h"
namespace Eigen
{
/**
* \ingroup Splines_Module
* \class Spline
* \brief A class representing multi-dimensional spline curves.
*
* The class represents B-splines with non-uniform knot vectors. Each control
* point of the B-spline is associated with a basis function
* \f{align*}
* C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i
* \f}
*
* \tparam _Scalar The underlying data type (typically float or double)
* \tparam _Dim The curve dimension (e.g. 2 or 3)
* \tparam _Degree Per default set to Dynamic; could be set to the actual desired
* degree for optimization purposes (would result in stack allocation
* of several temporary variables).
**/
template <typename _Scalar, int _Dim, int _Degree>
class Spline
{
public:
typedef _Scalar Scalar; /*!< The spline curve's scalar type. */
enum { Dimension = _Dim /*!< The spline curve's dimension. */ };
enum { Degree = _Degree /*!< The spline curve's degree. */ };
/** \brief The point type the spline is representing. */
typedef typename SplineTraits<Spline>::PointType PointType;
/** \brief The data type used to store knot vectors. */
typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType;
/** \brief The data type used to store parameter vectors. */
typedef typename SplineTraits<Spline>::ParameterVectorType ParameterVectorType;
/** \brief The data type used to store non-zero basis functions. */
typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType;
/** \brief The data type used to store the values of the basis function derivatives. */
typedef typename SplineTraits<Spline>::BasisDerivativeType BasisDerivativeType;
/** \brief The data type representing the spline's control points. */
typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType;
/**
* \brief Creates a (constant) zero spline.
* For Splines with dynamic degree, the resulting degree will be 0.
**/
Spline()
: m_knots(1, (Degree==Dynamic ? 2 : 2*Degree+2))
, m_ctrls(ControlPointVectorType::Zero(Dimension,(Degree==Dynamic ? 1 : Degree+1)))
{
// in theory this code can go to the initializer list but it will get pretty
// much unreadable ...
enum { MinDegree = (Degree==Dynamic ? 0 : Degree) };
m_knots.template segment<MinDegree+1>(0) = Array<Scalar,1,MinDegree+1>::Zero();
m_knots.template segment<MinDegree+1>(MinDegree+1) = Array<Scalar,1,MinDegree+1>::Ones();
}
/**
* \brief Creates a spline from a knot vector and control points.
* \param knots The spline's knot vector.
* \param ctrls The spline's control point vector.
**/
template <typename OtherVectorType, typename OtherArrayType>
Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {}
/**
* \brief Copy constructor for splines.
* \param spline The input spline.
**/
template <int OtherDegree>
Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) :
m_knots(spline.knots()), m_ctrls(spline.ctrls()) {}
/**
* \brief Returns the knots of the underlying spline.
**/
const KnotVectorType& knots() const { return m_knots; }
/**
* \brief Returns the ctrls of the underlying spline.
**/
const ControlPointVectorType& ctrls() const { return m_ctrls; }
/**
* \brief Returns the spline value at a given site \f$u\f$.
*
* The function returns
* \f{align*}
* C(u) & = \sum_{i=0}^{n}N_{i,p}P_i
* \f}
*
* \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated.
* \return The spline value at the given location \f$u\f$.
**/
PointType operator()(Scalar u) const;
/**
* \brief Evaluation of spline derivatives of up-to given order.
*
* The function returns
* \f{align*}
* \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i
* \f}
* for i ranging between 0 and order.
*
* \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated.
* \param order The order up to which the derivatives are computed.
**/
typename SplineTraits<Spline>::DerivativeType
derivatives(Scalar u, DenseIndex order) const;
/**
* \copydoc Spline::derivatives
* Using the template version of this function is more efficieent since
* temporary objects are allocated on the stack whenever this is possible.
**/
template <int DerivativeOrder>
typename SplineTraits<Spline,DerivativeOrder>::DerivativeType
derivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
/**
* \brief Computes the non-zero basis functions at the given site.
*
* Splines have local support and a point from their image is defined
* by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the
* spline degree.
*
* This function computes the \f$p+1\f$ non-zero basis function values
* for a given parameter value \f$u\f$. It returns
* \f{align*}{
* N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
* \f}
*
* \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions
* are computed.
**/
typename SplineTraits<Spline>::BasisVectorType
basisFunctions(Scalar u) const;
/**
* \brief Computes the non-zero spline basis function derivatives up to given order.
*
* The function computes
* \f{align*}{
* \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u)
* \f}
* with i ranging from 0 up to the specified order.
*
* \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function
* derivatives are computed.
* \param order The order up to which the basis function derivatives are computes.
**/
typename SplineTraits<Spline>::BasisDerivativeType
basisFunctionDerivatives(Scalar u, DenseIndex order) const;
/**
* \copydoc Spline::basisFunctionDerivatives
* Using the template version of this function is more efficieent since
* temporary objects are allocated on the stack whenever this is possible.
**/
template <int DerivativeOrder>
typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType
basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const;
/**
* \brief Returns the spline degree.
**/
DenseIndex degree() const;
/**
* \brief Returns the span within the knot vector in which u is falling.
* \param u The site for which the span is determined.
**/
DenseIndex span(Scalar u) const;
/**
* \brief Computes the spang within the provided knot vector in which u is falling.
**/
static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots);
/**
* \brief Returns the spline's non-zero basis functions.
*
* The function computes and returns
* \f{align*}{
* N_{i,p}(u), \hdots, N_{i+p+1,p}(u)
* \f}
*
* \param u The site at which the basis functions are computed.
* \param degree The degree of the underlying spline.
* \param knots The underlying spline's knot vector.
**/
static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots);
/**
* \copydoc Spline::basisFunctionDerivatives
* \param degree The degree of the underlying spline
* \param knots The underlying spline's knot vector.
**/
static BasisDerivativeType BasisFunctionDerivatives(
const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots);
private:
KnotVectorType m_knots; /*!< Knot vector. */
ControlPointVectorType m_ctrls; /*!< Control points. */
template <typename DerivativeType>
static void BasisFunctionDerivativesImpl(
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
const DenseIndex order,
const DenseIndex p,
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
DerivativeType& N_);
};
template <typename _Scalar, int _Dim, int _Degree>
DenseIndex Spline<_Scalar, _Dim, _Degree>::Span(
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u,
DenseIndex degree,
const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots)
{
// Piegl & Tiller, "The NURBS Book", A2.1 (p. 68)
if (u <= knots(0)) return degree;
const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u);
return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 );
}
template <typename _Scalar, int _Dim, int _Degree>
typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType
Spline<_Scalar, _Dim, _Degree>::BasisFunctions(
typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
DenseIndex degree,
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
{
typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType;
const DenseIndex p = degree;
const DenseIndex i = Spline::Span(u, degree, knots);
const KnotVectorType& U = knots;
BasisVectorType left(p+1); left(0) = Scalar(0);
BasisVectorType right(p+1); right(0) = Scalar(0);
VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
BasisVectorType N(1,p+1);
N(0) = Scalar(1);
for (DenseIndex j=1; j<=p; ++j)
{
Scalar saved = Scalar(0);
for (DenseIndex r=0; r<j; r++)
{
const Scalar tmp = N(r)/(right(r+1)+left(j-r));
N[r] = saved + right(r+1)*tmp;
saved = left(j-r)*tmp;
}
N(j) = saved;
}
return N;
}
template <typename _Scalar, int _Dim, int _Degree>
DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const
{
if (_Degree == Dynamic)
return m_knots.size() - m_ctrls.cols() - 1;
else
return _Degree;
}
template <typename _Scalar, int _Dim, int _Degree>
DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const
{
return Spline::Span(u, degree(), knots());
}
template <typename _Scalar, int _Dim, int _Degree>
typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const
{
enum { Order = SplineTraits<Spline>::OrderAtCompileTime };
const DenseIndex span = this->span(u);
const DenseIndex p = degree();
const BasisVectorType basis_funcs = basisFunctions(u);
const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs);
const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1);
return (ctrl_weights * ctrl_pts).rowwise().sum();
}
/* --------------------------------------------------------------------------------------------- */
template <typename SplineType, typename DerivativeType>
void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der)
{
enum { Dimension = SplineTraits<SplineType>::Dimension };
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
const DenseIndex p = spline.degree();
const DenseIndex span = spline.span(u);
const DenseIndex n = (std::min)(p, order);
der.resize(Dimension,n+1);
// Retrieve the basis function derivatives up to the desired order...
const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
// ... and perform the linear combinations of the control points.
for (DenseIndex der_order=0; der_order<n+1; ++der_order)
{
const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
}
}
template <typename _Scalar, int _Dim, int _Degree>
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType
Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
{
typename SplineTraits< Spline >::DerivativeType res;
derivativesImpl(*this, u, order, res);
return res;
}
template <typename _Scalar, int _Dim, int _Degree>
template <int DerivativeOrder>
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType
Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const
{
typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res;
derivativesImpl(*this, u, order, res);
return res;
}
template <typename _Scalar, int _Dim, int _Degree>
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType
Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const
{
return Spline::BasisFunctions(u, degree(), knots());
}
/* --------------------------------------------------------------------------------------------- */
template <typename _Scalar, int _Dim, int _Degree>
template <typename DerivativeType>
void Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivativesImpl(
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
const DenseIndex order,
const DenseIndex p,
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& U,
DerivativeType& N_)
{
typedef Spline<_Scalar, _Dim, _Degree> SplineType;
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
typedef typename SplineTraits<SplineType>::Scalar Scalar;
typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType;
const DenseIndex span = SplineType::Span(u, p, U);
const DenseIndex n = (std::min)(p, order);
N_.resize(n+1, p+1);
BasisVectorType left = BasisVectorType::Zero(p+1);
BasisVectorType right = BasisVectorType::Zero(p+1);
Matrix<Scalar,Order,Order> ndu(p+1,p+1);
Scalar saved, temp; // FIXME These were double instead of Scalar. Was there a reason for that?
ndu(0,0) = 1.0;
DenseIndex j;
for (j=1; j<=p; ++j)
{
left[j] = u-U[span+1-j];
right[j] = U[span+j]-u;
saved = 0.0;
for (DenseIndex r=0; r<j; ++r)
{
/* Lower triangle */
ndu(j,r) = right[r+1]+left[j-r];
temp = ndu(r,j-1)/ndu(j,r);
/* Upper triangle */
ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp);
saved = left[j-r] * temp;
}
ndu(j,j) = static_cast<Scalar>(saved);
}
for (j = p; j>=0; --j)
N_(0,j) = ndu(j,p);
// Compute the derivatives
DerivativeType a(n+1,p+1);
DenseIndex r=0;
for (; r<=p; ++r)
{
DenseIndex s1,s2;
s1 = 0; s2 = 1; // alternate rows in array a
a(0,0) = 1.0;
// Compute the k-th derivative
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
{
Scalar d = 0.0;
DenseIndex rk,pk,j1,j2;
rk = r-k; pk = p-k;
if (r>=k)
{
a(s2,0) = a(s1,0)/ndu(pk+1,rk);
d = a(s2,0)*ndu(rk,pk);
}
if (rk>=-1) j1 = 1;
else j1 = -rk;
if (r-1 <= pk) j2 = k-1;
else j2 = p-r;
for (j=j1; j<=j2; ++j)
{
a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j);
d += a(s2,j)*ndu(rk+j,pk);
}
if (r<=pk)
{
a(s2,k) = -a(s1,k-1)/ndu(pk+1,r);
d += a(s2,k)*ndu(r,pk);
}
N_(k,r) = static_cast<Scalar>(d);
j = s1; s1 = s2; s2 = j; // Switch rows
}
}
/* Multiply through by the correct factors */
/* (Eq. [2.9]) */
r = p;
for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k)
{
for (j=p; j>=0; --j) N_(k,j) *= r;
r *= p-k;
}
}
template <typename _Scalar, int _Dim, int _Degree>
typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
{
typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType der;
BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
return der;
}
template <typename _Scalar, int _Dim, int _Degree>
template <int DerivativeOrder>
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType
Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const
{
typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType der;
BasisFunctionDerivativesImpl(u, order, degree(), knots(), der);
return der;
}
template <typename _Scalar, int _Dim, int _Degree>
typename SplineTraits<Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType
Spline<_Scalar, _Dim, _Degree>::BasisFunctionDerivatives(
const typename Spline<_Scalar, _Dim, _Degree>::Scalar u,
const DenseIndex order,
const DenseIndex degree,
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
{
typename SplineTraits<Spline>::BasisDerivativeType der;
BasisFunctionDerivativesImpl(u, order, degree, knots, der);
return der;
}
}
#endif // EIGEN_SPLINE_H
|