aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/SparseExtra/SuperLUSupport.h
blob: 31a0ee509b91f8a46c386533331154afbd363d9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SUPERLUSUPPORT_H
#define EIGEN_SUPERLUSUPPORT_H

// declaration of gssvx taken from GMM++
#define DECL_GSSVX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \
    inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,  \
         int *perm_c, int *perm_r, int *etree, char *equed,  \
         FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,         \
         SuperMatrix *U, void *work, int lwork,              \
         SuperMatrix *B, SuperMatrix *X,                     \
         FLOATTYPE *recip_pivot_growth,                      \
         FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \
         SuperLUStat_t *stats, int *info, KEYTYPE) {         \
    using namespace NAMESPACE; \
    mem_usage_t mem_usage;                                    \
    NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L,  \
         U, work, lwork, B, X, recip_pivot_growth, rcond,    \
         ferr, berr, &mem_usage, stats, info);               \
    return mem_usage.for_lu; /* bytes used by the factor storage */     \
  }

DECL_GSSVX(SuperLU_S,sgssvx,float,float)
DECL_GSSVX(SuperLU_C,cgssvx,float,std::complex<float>)
DECL_GSSVX(SuperLU_D,dgssvx,double,double)
DECL_GSSVX(SuperLU_Z,zgssvx,double,std::complex<double>)

#ifdef MILU_ALPHA
#define EIGEN_SUPERLU_HAS_ILU
#endif

#ifdef EIGEN_SUPERLU_HAS_ILU

// similarly for the incomplete factorization using gsisx
#define DECL_GSISX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \
    inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A,  \
         int *perm_c, int *perm_r, int *etree, char *equed,  \
         FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,         \
         SuperMatrix *U, void *work, int lwork,              \
         SuperMatrix *B, SuperMatrix *X,                     \
         FLOATTYPE *recip_pivot_growth,                      \
         FLOATTYPE *rcond,                                   \
         SuperLUStat_t *stats, int *info, KEYTYPE) {         \
    using namespace NAMESPACE; \
    mem_usage_t mem_usage;                                    \
    NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L,  \
         U, work, lwork, B, X, recip_pivot_growth, rcond,    \
         &mem_usage, stats, info);                           \
    return mem_usage.for_lu; /* bytes used by the factor storage */     \
  }

DECL_GSISX(SuperLU_S,sgsisx,float,float)
DECL_GSISX(SuperLU_C,cgsisx,float,std::complex<float>)
DECL_GSISX(SuperLU_D,dgsisx,double,double)
DECL_GSISX(SuperLU_Z,zgsisx,double,std::complex<double>)

#endif

template<typename MatrixType>
struct SluMatrixMapHelper;

/** \internal
  *
  * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
  * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
  *
  * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
  */
struct SluMatrix : SuperMatrix
{
  SluMatrix()
  {
    Store = &storage;
  }

  SluMatrix(const SluMatrix& other)
    : SuperMatrix(other)
  {
    Store = &storage;
    storage = other.storage;
  }

  SluMatrix& operator=(const SluMatrix& other)
  {
    SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
    Store = &storage;
    storage = other.storage;
    return *this;
  }

  struct
  {
    union {int nnz;int lda;};
    void *values;
    int *innerInd;
    int *outerInd;
  } storage;

  void setStorageType(Stype_t t)
  {
    Stype = t;
    if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
      Store = &storage;
    else
    {
      eigen_assert(false && "storage type not supported");
      Store = 0;
    }
  }

  template<typename Scalar>
  void setScalarType()
  {
    if (internal::is_same_type<Scalar,float>::ret)
      Dtype = SLU_S;
    else if (internal::is_same_type<Scalar,double>::ret)
      Dtype = SLU_D;
    else if (internal::is_same_type<Scalar,std::complex<float> >::ret)
      Dtype = SLU_C;
    else if (internal::is_same_type<Scalar,std::complex<double> >::ret)
      Dtype = SLU_Z;
    else
    {
      eigen_assert(false && "Scalar type not supported by SuperLU");
    }
  }

  template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
  static SluMatrix Map(Matrix<Scalar,Rows,Cols,Options,MRows,MCols>& mat)
  {
    typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
    eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
    SluMatrix res;
    res.setStorageType(SLU_DN);
    res.setScalarType<Scalar>();
    res.Mtype     = SLU_GE;

    res.nrow      = mat.rows();
    res.ncol      = mat.cols();

    res.storage.lda       = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
    res.storage.values    = mat.data();
    return res;
  }

  template<typename MatrixType>
  static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
  {
    SluMatrix res;
    if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
    {
      res.setStorageType(SLU_NR);
      res.nrow      = mat.cols();
      res.ncol      = mat.rows();
    }
    else
    {
      res.setStorageType(SLU_NC);
      res.nrow      = mat.rows();
      res.ncol      = mat.cols();
    }

    res.Mtype     = SLU_GE;

    res.storage.nnz       = mat.nonZeros();
    res.storage.values    = mat.derived()._valuePtr();
    res.storage.innerInd  = mat.derived()._innerIndexPtr();
    res.storage.outerInd  = mat.derived()._outerIndexPtr();

    res.setScalarType<typename MatrixType::Scalar>();

    // FIXME the following is not very accurate
    if (MatrixType::Flags & Upper)
      res.Mtype = SLU_TRU;
    if (MatrixType::Flags & Lower)
      res.Mtype = SLU_TRL;
    if (MatrixType::Flags & SelfAdjoint)
      eigen_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
    return res;
  }
};

template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
{
  typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
  static void run(MatrixType& mat, SluMatrix& res)
  {
    eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
    res.setStorageType(SLU_DN);
    res.setScalarType<Scalar>();
    res.Mtype     = SLU_GE;

    res.nrow      = mat.rows();
    res.ncol      = mat.cols();

    res.storage.lda       = mat.outerStride();
    res.storage.values    = mat.data();
  }
};

template<typename Derived>
struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
{
  typedef Derived MatrixType;
  static void run(MatrixType& mat, SluMatrix& res)
  {
    if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
    {
      res.setStorageType(SLU_NR);
      res.nrow      = mat.cols();
      res.ncol      = mat.rows();
    }
    else
    {
      res.setStorageType(SLU_NC);
      res.nrow      = mat.rows();
      res.ncol      = mat.cols();
    }

    res.Mtype     = SLU_GE;

    res.storage.nnz       = mat.nonZeros();
    res.storage.values    = mat._valuePtr();
    res.storage.innerInd  = mat._innerIndexPtr();
    res.storage.outerInd  = mat._outerIndexPtr();

    res.setScalarType<typename MatrixType::Scalar>();

    // FIXME the following is not very accurate
    if (MatrixType::Flags & Upper)
      res.Mtype = SLU_TRU;
    if (MatrixType::Flags & Lower)
      res.Mtype = SLU_TRL;
    if (MatrixType::Flags & SelfAdjoint)
      eigen_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
  }
};

namespace internal {

template<typename MatrixType>
SluMatrix asSluMatrix(MatrixType& mat)
{
  return SluMatrix::Map(mat);
}

/** View a Super LU matrix as an Eigen expression */
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
{
  eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
         || (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);

  Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;

  return MappedSparseMatrix<Scalar,Flags,Index>(
    sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
    sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
}

} // end namespace internal

template<typename MatrixType>
class SparseLU<MatrixType,SuperLU> : public SparseLU<MatrixType>
{
  protected:
    typedef SparseLU<MatrixType> Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType;
    typedef SparseMatrix<Scalar,Upper> UMatrixType;
    using Base::m_flags;
    using Base::m_status;

  public:

    SparseLU(int flags = NaturalOrdering)
      : Base(flags)
    {
    }

    SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
      : Base(flags)
    {
      compute(matrix);
    }

    ~SparseLU()
    {
      Destroy_SuperNode_Matrix(&m_sluL);
      Destroy_CompCol_Matrix(&m_sluU);
    }

    inline const LMatrixType& matrixL() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_l;
    }

    inline const UMatrixType& matrixU() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_u;
    }

    inline const IntColVectorType& permutationP() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_p;
    }

    inline const IntRowVectorType& permutationQ() const
    {
      if (m_extractedDataAreDirty) extractData();
      return m_q;
    }

    Scalar determinant() const;

    template<typename BDerived, typename XDerived>
    bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed = SvNoTrans) const;

    void compute(const MatrixType& matrix);

  protected:

    void extractData() const;

  protected:
    // cached data to reduce reallocation, etc.
    mutable LMatrixType m_l;
    mutable UMatrixType m_u;
    mutable IntColVectorType m_p;
    mutable IntRowVectorType m_q;

    mutable SparseMatrix<Scalar> m_matrix;
    mutable SluMatrix m_sluA;
    mutable SuperMatrix m_sluL, m_sluU;
    mutable SluMatrix m_sluB, m_sluX;
    mutable SuperLUStat_t m_sluStat;
    mutable superlu_options_t m_sluOptions;
    mutable std::vector<int> m_sluEtree;
    mutable std::vector<RealScalar> m_sluRscale, m_sluCscale;
    mutable std::vector<RealScalar> m_sluFerr, m_sluBerr;
    mutable char m_sluEqued;
    mutable bool m_extractedDataAreDirty;
};

template<typename MatrixType>
void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a)
{
  const int size = a.rows();
  m_matrix = a;

  set_default_options(&m_sluOptions);
  m_sluOptions.ColPerm = NATURAL;
  m_sluOptions.PrintStat = NO;
  m_sluOptions.ConditionNumber = NO;
  m_sluOptions.Trans = NOTRANS;
  // m_sluOptions.Equil = NO;

  switch (Base::orderingMethod())
  {
      case NaturalOrdering          : m_sluOptions.ColPerm = NATURAL; break;
      case MinimumDegree_AT_PLUS_A  : m_sluOptions.ColPerm = MMD_AT_PLUS_A; break;
      case MinimumDegree_ATA        : m_sluOptions.ColPerm = MMD_ATA; break;
      case ColApproxMinimumDegree   : m_sluOptions.ColPerm = COLAMD; break;
      default:
        //std::cerr << "Eigen: ordering method \"" << Base::orderingMethod() << "\" not supported by the SuperLU backend\n";
        m_sluOptions.ColPerm = NATURAL;
  };

  m_sluA = internal::asSluMatrix(m_matrix);
  memset(&m_sluL,0,sizeof m_sluL);
  memset(&m_sluU,0,sizeof m_sluU);
  //m_sluEqued = 'B';
  int info = 0;

  m_p.resize(size);
  m_q.resize(size);
  m_sluRscale.resize(size);
  m_sluCscale.resize(size);
  m_sluEtree.resize(size);

  RealScalar recip_pivot_gross, rcond;
  RealScalar ferr, berr;

  // set empty B and X
  m_sluB.setStorageType(SLU_DN);
  m_sluB.setScalarType<Scalar>();
  m_sluB.Mtype = SLU_GE;
  m_sluB.storage.values = 0;
  m_sluB.nrow = m_sluB.ncol = 0;
  m_sluB.storage.lda = size;
  m_sluX = m_sluB;

  StatInit(&m_sluStat);
  if (m_flags&IncompleteFactorization)
  {
    #ifdef EIGEN_SUPERLU_HAS_ILU
    ilu_set_default_options(&m_sluOptions);

    // no attempt to preserve column sum
    m_sluOptions.ILU_MILU = SILU;

    // only basic ILU(k) support -- no direct control over memory consumption
    // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
    // and set ILU_FillFactor to max memory growth
    m_sluOptions.ILU_DropRule = DROP_BASIC;
    m_sluOptions.ILU_DropTol = Base::m_precision;

    SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
      &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
      &m_sluL, &m_sluU,
      NULL, 0,
      &m_sluB, &m_sluX,
      &recip_pivot_gross, &rcond,
      &m_sluStat, &info, Scalar());
    #else
    //std::cerr << "Incomplete factorization is only available in SuperLU v4\n";
    Base::m_succeeded = false;
    return;
    #endif
  }
  else
  {
    SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
      &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
      &m_sluL, &m_sluU,
      NULL, 0,
      &m_sluB, &m_sluX,
      &recip_pivot_gross, &rcond,
      &ferr, &berr,
      &m_sluStat, &info, Scalar());
  }
  StatFree(&m_sluStat);

  m_extractedDataAreDirty = true;

  // FIXME how to better check for errors ???
  Base::m_succeeded = (info == 0);
}

template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b,
                        MatrixBase<XDerived> *x, const int transposed) const
{
  const int size = m_matrix.rows();
  const int rhsCols = b.cols();
  eigen_assert(size==b.rows());

  switch (transposed) {
      case SvNoTrans    :  m_sluOptions.Trans = NOTRANS; break;
      case SvTranspose  :  m_sluOptions.Trans = TRANS;   break;
      case SvAdjoint    :  m_sluOptions.Trans = CONJ;    break;
      default:
        //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the SuperLU backend\n";
        m_sluOptions.Trans = NOTRANS;
  }

  m_sluOptions.Fact = FACTORED;
  m_sluOptions.IterRefine = NOREFINE;

  m_sluFerr.resize(rhsCols);
  m_sluBerr.resize(rhsCols);
  m_sluB = SluMatrix::Map(b.const_cast_derived());
  m_sluX = SluMatrix::Map(x->derived());

  StatInit(&m_sluStat);
  int info = 0;
  RealScalar recip_pivot_gross, rcond;

  if (m_flags&IncompleteFactorization)
  {
    #ifdef EIGEN_SUPERLU_HAS_ILU
    SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
      &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
      &m_sluL, &m_sluU,
      NULL, 0,
      &m_sluB, &m_sluX,
      &recip_pivot_gross, &rcond,
      &m_sluStat, &info, Scalar());
    #else
    //std::cerr << "Incomplete factorization is only available in SuperLU v4\n";
    return false;
    #endif
  }
  else
  {
    SuperLU_gssvx(
      &m_sluOptions, &m_sluA,
      m_q.data(), m_p.data(),
      &m_sluEtree[0], &m_sluEqued,
      &m_sluRscale[0], &m_sluCscale[0],
      &m_sluL, &m_sluU,
      NULL, 0,
      &m_sluB, &m_sluX,
      &recip_pivot_gross, &rcond,
      &m_sluFerr[0], &m_sluBerr[0],
      &m_sluStat, &info, Scalar());
  }
  StatFree(&m_sluStat);

  // reset to previous state
  m_sluOptions.Trans = NOTRANS;
  return info==0;
}

//
// the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
//
//  Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
//
//  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
//  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
//
template<typename MatrixType>
void SparseLU<MatrixType,SuperLU>::extractData() const
{
  if (m_extractedDataAreDirty)
  {
    int         upper;
    int         fsupc, istart, nsupr;
    int         lastl = 0, lastu = 0;
    SCformat    *Lstore = static_cast<SCformat*>(m_sluL.Store);
    NCformat    *Ustore = static_cast<NCformat*>(m_sluU.Store);
    Scalar      *SNptr;

    const int size = m_matrix.rows();
    m_l.resize(size,size);
    m_l.resizeNonZeros(Lstore->nnz);
    m_u.resize(size,size);
    m_u.resizeNonZeros(Ustore->nnz);

    int* Lcol = m_l._outerIndexPtr();
    int* Lrow = m_l._innerIndexPtr();
    Scalar* Lval = m_l._valuePtr();

    int* Ucol = m_u._outerIndexPtr();
    int* Urow = m_u._innerIndexPtr();
    Scalar* Uval = m_u._valuePtr();

    Ucol[0] = 0;
    Ucol[0] = 0;

    /* for each supernode */
    for (int k = 0; k <= Lstore->nsuper; ++k)
    {
      fsupc   = L_FST_SUPC(k);
      istart  = L_SUB_START(fsupc);
      nsupr   = L_SUB_START(fsupc+1) - istart;
      upper   = 1;

      /* for each column in the supernode */
      for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
      {
        SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];

        /* Extract U */
        for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
        {
          Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
          /* Matlab doesn't like explicit zero. */
          if (Uval[lastu] != 0.0)
            Urow[lastu++] = U_SUB(i);
        }
        for (int i = 0; i < upper; ++i)
        {
          /* upper triangle in the supernode */
          Uval[lastu] = SNptr[i];
          /* Matlab doesn't like explicit zero. */
          if (Uval[lastu] != 0.0)
            Urow[lastu++] = L_SUB(istart+i);
        }
        Ucol[j+1] = lastu;

        /* Extract L */
        Lval[lastl] = 1.0; /* unit diagonal */
        Lrow[lastl++] = L_SUB(istart + upper - 1);
        for (int i = upper; i < nsupr; ++i)
        {
          Lval[lastl] = SNptr[i];
          /* Matlab doesn't like explicit zero. */
          if (Lval[lastl] != 0.0)
            Lrow[lastl++] = L_SUB(istart+i);
        }
        Lcol[j+1] = lastl;

        ++upper;
      } /* for j ... */

    } /* for k ... */

    // squeeze the matrices :
    m_l.resizeNonZeros(lastl);
    m_u.resizeNonZeros(lastu);

    m_extractedDataAreDirty = false;
  }
}

template<typename MatrixType>
typename SparseLU<MatrixType,SuperLU>::Scalar SparseLU<MatrixType,SuperLU>::determinant() const
{
  if (m_extractedDataAreDirty)
    extractData();

  // TODO this code could be moved to the default/base backend
  // FIXME perhaps we have to take into account the scale factors m_sluRscale and m_sluCscale ???
  Scalar det = Scalar(1);
  for (int j=0; j<m_u.cols(); ++j)
  {
    if (m_u._outerIndexPtr()[j+1]-m_u._outerIndexPtr()[j] > 0)
    {
      int lastId = m_u._outerIndexPtr()[j+1]-1;
      eigen_assert(m_u._innerIndexPtr()[lastId]<=j);
      if (m_u._innerIndexPtr()[lastId]==j)
      {
        det *= m_u._valuePtr()[lastId];
      }
    }
    // std::cout << m_sluRscale[j] << " " << m_sluCscale[j] << "   ";
  }
  return det;
}

#endif // EIGEN_SUPERLUSUPPORT_H