aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/SparseExtra/SparseLU.h
blob: 3d10dbbee36f4c77c9c0891ab069e6e6932b98c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSELU_H
#define EIGEN_SPARSELU_H

enum {
    SvNoTrans   = 0,
    SvTranspose = 1,
    SvAdjoint   = 2
};

/** \ingroup Sparse_Module
  *
  * \class SparseLU
  *
  * \brief LU decomposition of a sparse matrix and associated features
  *
  * \param _MatrixType the type of the matrix of which we are computing the LU factorization
  *
  * \sa class FullPivLU, class SparseLLT
  */
template<typename _MatrixType, typename Backend = DefaultBackend>
class SparseLU
  {
  protected:
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
    typedef SparseMatrix<Scalar> LUMatrixType;

    enum {
      MatrixLUIsDirty             = 0x10000
    };

  public:
    typedef _MatrixType MatrixType;

    /** Creates a dummy LU factorization object with flags \a flags. */
    SparseLU(int flags = 0)
      : m_flags(flags), m_status(0)
    {
      m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
    }

    /** Creates a LU object and compute the respective factorization of \a matrix using
      * flags \a flags. */
    SparseLU(const _MatrixType& matrix, int flags = 0)
      : /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
    {
      m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
      compute(matrix);
    }

    /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
      *
      * Setting a value greater than zero speeds up computation, and yields to an imcomplete
      * factorization with fewer non zero coefficients. Such approximate factors are especially
      * useful to initialize an iterative solver.
      *
      * Note that the exact meaning of this parameter might depends on the actual
      * backend. Moreover, not all backends support this feature.
      *
      * \sa precision() */
    void setPrecision(RealScalar v) { m_precision = v; }

    /** \returns the current precision.
      *
      * \sa setPrecision() */
    RealScalar precision() const { return m_precision; }

    /** Sets the flags. Possible values are:
      *  - CompleteFactorization
      *  - IncompleteFactorization
      *  - MemoryEfficient
      *  - one of the ordering methods
      *  - etc...
      *
      * \sa flags() */
    void setFlags(int f) { m_flags = f; }
    /** \returns the current flags */
    int flags() const { return m_flags; }

    void setOrderingMethod(int m)
    {
      eigen_assert( (m&~OrderingMask) == 0 && m!=0 && "invalid ordering method");
      m_flags = m_flags&~OrderingMask | m&OrderingMask;
    }

    int orderingMethod() const
    {
      return m_flags&OrderingMask;
    }

    /** Computes/re-computes the LU factorization */
    void compute(const _MatrixType& matrix);

    /** \returns the lower triangular matrix L */
    //inline const _MatrixType& matrixL() const { return m_matrixL; }

    /** \returns the upper triangular matrix U */
    //inline const _MatrixType& matrixU() const { return m_matrixU; }

    template<typename BDerived, typename XDerived>
    bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
               const int transposed = SvNoTrans) const;

    /** \returns true if the factorization succeeded */
    inline bool succeeded(void) const { return m_succeeded; }

  protected:
    RealScalar m_precision;
    int m_flags;
    mutable int m_status;
    bool m_succeeded;
};

/** Computes / recomputes the LU decomposition of matrix \a a
  * using the default algorithm.
  */
template<typename _MatrixType, typename Backend>
void SparseLU<_MatrixType,Backend>::compute(const _MatrixType& )
{
  eigen_assert(false && "not implemented yet");
}

/** Computes *x = U^-1 L^-1 b
  *
  * If \a transpose is set to SvTranspose or SvAdjoint, the solution
  * of the transposed/adjoint system is computed instead.
  *
  * Not all backends implement the solution of the transposed or
  * adjoint system.
  */
template<typename _MatrixType, typename Backend>
template<typename BDerived, typename XDerived>
bool SparseLU<_MatrixType,Backend>::solve(const MatrixBase<BDerived> &, MatrixBase<XDerived>* , const int ) const
{
  eigen_assert(false && "not implemented yet");
  return false;
}

#endif // EIGEN_SPARSELU_H