aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/SparseExtra/RandomSetter.h
blob: 7542cf76496275f2ff3bc36fad86426faee87c1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_RANDOMSETTER_H
#define EIGEN_RANDOMSETTER_H

namespace Eigen { 

/** Represents a std::map
  *
  * \see RandomSetter
  */
template<typename Scalar> struct StdMapTraits
{
  typedef int KeyType;
  typedef std::map<KeyType,Scalar> Type;
  enum {
    IsSorted = 1
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};

#ifdef EIGEN_UNORDERED_MAP_SUPPORT
/** Represents a std::unordered_map
  *
  * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
  * yourself making sure that unordered_map is defined in the std namespace.
  *
  * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
  * \code
  * #include <tr1/unordered_map>
  * #define EIGEN_UNORDERED_MAP_SUPPORT
  * namespace std {
  *   using std::tr1::unordered_map;
  * }
  * \endcode
  *
  * \see RandomSetter
  */
template<typename Scalar> struct StdUnorderedMapTraits
{
  typedef int KeyType;
  typedef std::unordered_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};
#endif // EIGEN_UNORDERED_MAP_SUPPORT

#ifdef _DENSE_HASH_MAP_H_
/** Represents a google::dense_hash_map
  *
  * \see RandomSetter
  */
template<typename Scalar> struct GoogleDenseHashMapTraits
{
  typedef int KeyType;
  typedef google::dense_hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type& map, const KeyType& k)
  { map.set_empty_key(k); }
};
#endif

#ifdef _SPARSE_HASH_MAP_H_
/** Represents a google::sparse_hash_map
  *
  * \see RandomSetter
  */
template<typename Scalar> struct GoogleSparseHashMapTraits
{
  typedef int KeyType;
  typedef google::sparse_hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};
#endif

/** \class RandomSetter
  *
  * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
  *
  * \tparam SparseMatrixType the type of the sparse matrix we are updating
  * \tparam MapTraits a traits class representing the map implementation used for the temporary sparse storage.
  *                  Its default value depends on the system.
  * \tparam OuterPacketBits defines the number of rows (or columns) manage by a single map object
  *                        as a power of two exponent.
  *
  * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
  * efficient random access. The conversion from the compressed representation to a hash_map object is performed
  * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
  * suggest the use of nested blocks as in this example:
  *
  * \code
  * SparseMatrix<double> m(rows,cols);
  * {
  *   RandomSetter<SparseMatrix<double> > w(m);
  *   // don't use m but w instead with read/write random access to the coefficients:
  *   for(;;)
  *     w(rand(),rand()) = rand;
  * }
  * // when w is deleted, the data are copied back to m
  * // and m is ready to use.
  * \endcode
  *
  * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
  * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
  * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
  * To reach optimal performance, this value should be adjusted according to the average number of nonzeros
  * per rows/columns.
  *
  * The possible values for the template parameter MapTraits are:
  *  - \b StdMapTraits: corresponds to std::map. (does not perform very well)
  *  - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
  *  - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
  *  - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
  *
  * The default map implementation depends on the availability, and the preferred order is:
  * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
  *
  * For performance and memory consumption reasons it is highly recommended to use one of
  * the Google's hash_map implementation. To enable the support for them, you have two options:
  *  - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
  *  - define EIGEN_GOOGLEHASH_SUPPORT
  * In the later case the inclusion of <google/dense_hash_map> is made for you.
  *
  * \see http://code.google.com/p/google-sparsehash/
  */
template<typename SparseMatrixType,
         template <typename T> class MapTraits =
#if defined _DENSE_HASH_MAP_H_
          GoogleDenseHashMapTraits
#elif defined _HASH_MAP
          GnuHashMapTraits
#else
          StdMapTraits
#endif
         ,int OuterPacketBits = 6>
class RandomSetter
{
    typedef typename SparseMatrixType::Scalar Scalar;
    typedef typename SparseMatrixType::StorageIndex StorageIndex;

    struct ScalarWrapper
    {
      ScalarWrapper() : value(0) {}
      Scalar value;
    };
    typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
    typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
    static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
    enum {
      SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
      TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
      SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
    };

  public:

    /** Constructs a random setter object from the sparse matrix \a target
      *
      * Note that the initial value of \a target are imported. If you want to re-set
      * a sparse matrix from scratch, then you must set it to zero first using the
      * setZero() function.
      */
    inline RandomSetter(SparseMatrixType& target)
      : mp_target(&target)
    {
      const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
      const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
      m_outerPackets = outerSize >> OuterPacketBits;
      if (outerSize&OuterPacketMask)
        m_outerPackets += 1;
      m_hashmaps = new HashMapType[m_outerPackets];
      // compute number of bits needed to store inner indices
      Index aux = innerSize - 1;
      m_keyBitsOffset = 0;
      while (aux)
      {
        ++m_keyBitsOffset;
        aux = aux >> 1;
      }
      KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
      for (Index k=0; k<m_outerPackets; ++k)
        MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);

      // insert current coeffs
      for (Index j=0; j<mp_target->outerSize(); ++j)
        for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
          (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
    }

    /** Destructor updating back the sparse matrix target */
    ~RandomSetter()
    {
      KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
      if (!SwapStorage) // also means the map is sorted
      {
        mp_target->setZero();
        mp_target->makeCompressed();
        mp_target->reserve(nonZeros());
        Index prevOuter = -1;
        for (Index k=0; k<m_outerPackets; ++k)
        {
          const Index outerOffset = (1<<OuterPacketBits) * k;
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
            const Index inner = it->first & keyBitsMask;
            if (prevOuter!=outer)
            {
              for (Index j=prevOuter+1;j<=outer;++j)
                mp_target->startVec(j);
              prevOuter = outer;
            }
            mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
          }
        }
        mp_target->finalize();
      }
      else
      {
        VectorXi positions(mp_target->outerSize());
        positions.setZero();
        // pass 1
        for (Index k=0; k<m_outerPackets; ++k)
        {
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const Index outer = it->first & keyBitsMask;
            ++positions[outer];
          }
        }
        // prefix sum
        StorageIndex count = 0;
        for (Index j=0; j<mp_target->outerSize(); ++j)
        {
          StorageIndex tmp = positions[j];
          mp_target->outerIndexPtr()[j] = count;
          positions[j] = count;
          count += tmp;
        }
        mp_target->makeCompressed();
        mp_target->outerIndexPtr()[mp_target->outerSize()] = count;
        mp_target->resizeNonZeros(count);
        // pass 2
        for (Index k=0; k<m_outerPackets; ++k)
        {
          const Index outerOffset = (1<<OuterPacketBits) * k;
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
            const Index outer = it->first & keyBitsMask;
            // sorted insertion
            // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
            // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
            // small fraction of them have to be sorted, whence the following simple procedure:
            Index posStart = mp_target->outerIndexPtr()[outer];
            Index i = (positions[outer]++) - 1;
            while ( (i >= posStart) && (mp_target->innerIndexPtr()[i] > inner) )
            {
              mp_target->valuePtr()[i+1] = mp_target->valuePtr()[i];
              mp_target->innerIndexPtr()[i+1] = mp_target->innerIndexPtr()[i];
              --i;
            }
            mp_target->innerIndexPtr()[i+1] = internal::convert_index<StorageIndex>(inner);
            mp_target->valuePtr()[i+1] = it->second.value;
          }
        }
      }
      delete[] m_hashmaps;
    }

    /** \returns a reference to the coefficient at given coordinates \a row, \a col */
    Scalar& operator() (Index row, Index col)
    {
      const Index outer = SetterRowMajor ? row : col;
      const Index inner = SetterRowMajor ? col : row;
      const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
      const Index outerMinor = outer & OuterPacketMask;  // index of the inner vector in the packet
      const KeyType key = internal::convert_index<KeyType>((outerMinor<<m_keyBitsOffset) | inner);
      return m_hashmaps[outerMajor][key].value;
    }

    /** \returns the number of non zero coefficients
      *
      * \note According to the underlying map/hash_map implementation,
      * this function might be quite expensive.
      */
    Index nonZeros() const
    {
      Index nz = 0;
      for (Index k=0; k<m_outerPackets; ++k)
        nz += static_cast<Index>(m_hashmaps[k].size());
      return nz;
    }


  protected:

    HashMapType* m_hashmaps;
    SparseMatrixType* mp_target;
    Index m_outerPackets;
    unsigned char m_keyBitsOffset;
};

} // end namespace Eigen

#endif // EIGEN_RANDOMSETTER_H