aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h
blob: 57884870c087cd7dfb5711223954c0ac87cd2719 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

    template <typename Scalar>
void ei_qrsolv(int n, Scalar *r__, int ldr, 
        const int *ipvt, const Scalar *diag, const Scalar *qtb, Scalar *x, 
        Scalar *sdiag, Scalar *wa)
{
    /* System generated locals */
    int r_dim1, r_offset;

    /* Local variables */
    int i, j, k, l, jp1, kp1;
    Scalar tan__, cos__, sin__, sum, temp, cotan;
    int nsing;
    Scalar qtbpj;

    /* Parameter adjustments */
    --wa;
    --sdiag;
    --x;
    --qtb;
    --diag;
    --ipvt;
    r_dim1 = ldr;
    r_offset = 1 + r_dim1 * 1;
    r__ -= r_offset;

    /* Function Body */

    /*     copy r and (q transpose)*b to preserve input and initialize s. */
    /*     in particular, save the diagonal elements of r in x. */

    for (j = 1; j <= n; ++j) {
        for (i = j; i <= n; ++i) {
            r__[i + j * r_dim1] = r__[j + i * r_dim1];
            /* L10: */
        }
        x[j] = r__[j + j * r_dim1];
        wa[j] = qtb[j];
        /* L20: */
    }

    /*     eliminate the diagonal matrix d using a givens rotation. */

    for (j = 1; j <= n; ++j) {

        /*        prepare the row of d to be eliminated, locating the */
        /*        diagonal element using p from the qr factorization. */

        l = ipvt[j];
        if (diag[l] == 0.) {
            goto L90;
        }
        for (k = j; k <= n; ++k) {
            sdiag[k] = 0.;
            /* L30: */
        }
        sdiag[j] = diag[l];

        /*        the transformations to eliminate the row of d */
        /*        modify only a single element of (q transpose)*b */
        /*        beyond the first n, which is initially zero. */

        qtbpj = 0.;
        for (k = j; k <= n; ++k) {

            /*           determine a givens rotation which eliminates the */
            /*           appropriate element in the current row of d. */

            if (sdiag[k] == 0.)
                goto L70;
            if ( ei_abs(r__[k + k * r_dim1]) >= ei_abs(sdiag[k]))
                goto L40;
            cotan = r__[k + k * r_dim1] / sdiag[k];
            /* Computing 2nd power */
            sin__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(cotan));
            cos__ = sin__ * cotan;
            goto L50;
L40:
            tan__ = sdiag[k] / r__[k + k * r_dim1];
            /* Computing 2nd power */
            cos__ = Scalar(.5) / ei_sqrt(Scalar(0.25) + Scalar(0.25) * ei_abs2(tan__));
            sin__ = cos__ * tan__;
L50:

            /*           compute the modified diagonal element of r and */
            /*           the modified element of ((q transpose)*b,0). */

            r__[k + k * r_dim1] = cos__ * r__[k + k * r_dim1] + sin__ * sdiag[
                k];
            temp = cos__ * wa[k] + sin__ * qtbpj;
            qtbpj = -sin__ * wa[k] + cos__ * qtbpj;
            wa[k] = temp;

            /*           accumulate the tranformation in the row of s. */

            kp1 = k + 1;
            if (n < kp1) {
                goto L70;
            }
            for (i = kp1; i <= n; ++i) {
                temp = cos__ * r__[i + k * r_dim1] + sin__ * sdiag[i];
                sdiag[i] = -sin__ * r__[i + k * r_dim1] + cos__ * sdiag[
                    i];
                r__[i + k * r_dim1] = temp;
                /* L60: */
            }
L70:
            /* L80: */
            ;
        }
L90:

        /*        store the diagonal element of s and restore */
        /*        the corresponding diagonal element of r. */

        sdiag[j] = r__[j + j * r_dim1];
        r__[j + j * r_dim1] = x[j];
        /* L100: */
    }

    /*     solve the triangular system for z. if the system is */
    /*     singular, then obtain a least squares solution. */

    nsing = n;
    for (j = 1; j <= n; ++j) {
        if (sdiag[j] == 0. && nsing == n) {
            nsing = j - 1;
        }
        if (nsing < n) {
            wa[j] = 0.;
        }
        /* L110: */
    }
    if (nsing < 1) {
        goto L150;
    }
    for (k = 1; k <= nsing; ++k) {
        j = nsing - k + 1;
        sum = 0.;
        jp1 = j + 1;
        if (nsing < jp1) {
            goto L130;
        }
        for (i = jp1; i <= nsing; ++i) {
            sum += r__[i + j * r_dim1] * wa[i];
            /* L120: */
        }
L130:
        wa[j] = (wa[j] - sum) / sdiag[j];
        /* L140: */
    }
L150:

    /*     permute the components of z back to components of x. */

    for (j = 1; j <= n; ++j) {
        l = ipvt[j];
        x[l] = wa[j];
        /* L160: */
    }
    return;

    /*     last card of subroutine qrsolv. */

} /* qrsolv_ */