aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
blob: e5b66c0d71c011083b89b102757c15c34edb34b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

template <typename Scalar>
void ei_lmpar(
        Matrix< Scalar, Dynamic, Dynamic > &r,
        VectorXi &ipvt, // TODO : const once ipvt mess fixed
        const Matrix< Scalar, Dynamic, 1 >  &diag,
        const Matrix< Scalar, Dynamic, 1 >  &qtb,
        Scalar delta,
        Scalar &par,
        Matrix< Scalar, Dynamic, 1 >  &x)
{
    /* Local variables */
    int i, j, l;
    Scalar fp;
    Scalar parc, parl;
    int iter;
    Scalar temp, paru;
    Scalar gnorm;
    Scalar dxnorm;


    /* Function Body */
    const Scalar dwarf = std::numeric_limits<Scalar>::min();
    const int n = r.cols();
    assert(n==diag.size());
    assert(n==qtb.size());
    assert(n==x.size());

    Matrix< Scalar, Dynamic, 1 >  wa1, wa2;

    /* compute and store in x the gauss-newton direction. if the */
    /* jacobian is rank-deficient, obtain a least squares solution. */

    int nsing = n-1;
    wa1 = qtb;
    for (j = 0; j < n; ++j) {
        if (r(j,j) == 0. && nsing == n-1)
            nsing = j - 1;
        if (nsing < n-1) 
            wa1[j] = 0.;
    }
    for (j = nsing; j>=0; --j) {
        wa1[j] /= r(j,j);
        temp = wa1[j];
        for (i = 0; i < j ; ++i)
            wa1[i] -= r(i,j) * temp;
    }

    for (j = 0; j < n; ++j)
        x[ipvt[j]] = wa1[j];

    /* initialize the iteration counter. */
    /* evaluate the function at the origin, and test */
    /* for acceptance of the gauss-newton direction. */

    iter = 0;
    wa2 = diag.cwise() * x;
    dxnorm = wa2.blueNorm();
    fp = dxnorm - delta;
    if (fp <= Scalar(0.1) * delta) {
        par = 0;
        return;
    }

    /* if the jacobian is not rank deficient, the newton */
    /* step provides a lower bound, parl, for the zero of */
    /* the function. otherwise set this bound to zero. */

    parl = 0.;
    if (nsing >= n-1) {
        for (j = 0; j < n; ++j) {
            l = ipvt[j];
            wa1[j] = diag[l] * (wa2[l] / dxnorm);
        }
        // it's actually a triangularView.solveInplace(), though in a weird
        // way:
        for (j = 0; j < n; ++j) {
            Scalar sum = 0.;
            for (i = 0; i < j; ++i) 
                sum += r(i,j) * wa1[i];
            wa1[j] = (wa1[j] - sum) / r(j,j);
        }
        temp = wa1.blueNorm();
        parl = fp / delta / temp / temp;
    }

    /* calculate an upper bound, paru, for the zero of the function. */

    for (j = 0; j < n; ++j)
        wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];

    gnorm = wa1.stableNorm();
    paru = gnorm / delta;
    if (paru == 0.)
        paru = dwarf / std::min(delta,Scalar(0.1));

    /* if the input par lies outside of the interval (parl,paru), */
    /* set par to the closer endpoint. */

    par = std::max(par,parl);
    par = std::min(par,paru);
    if (par == 0.)
        par = gnorm / dxnorm;

    /* beginning of an iteration. */

    while (true) {
        ++iter;

        /* evaluate the function at the current value of par. */

        if (par == 0.)
            par = std::max(dwarf,Scalar(.001) * paru); /* Computing MAX */

        wa1 = ei_sqrt(par)* diag;

        Matrix< Scalar, Dynamic, 1 > sdiag(n);
        ei_qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);

        wa2 = diag.cwise() * x;
        dxnorm = wa2.blueNorm();
        temp = fp;
        fp = dxnorm - delta;

        /* if the function is small enough, accept the current value */
        /* of par. also test for the exceptional cases where parl */
        /* is zero or the number of iterations has reached 10. */

        if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
            break;

        /* compute the newton correction. */

        for (j = 0; j < n; ++j) {
            l = ipvt[j];
            wa1[j] = diag[l] * (wa2[l] / dxnorm);
        }
        for (j = 0; j < n; ++j) {
            wa1[j] /= sdiag[j];
            temp = wa1[j];
            for (i = j+1; i < n; ++i)
                wa1[i] -= r(i,j) * temp;
        }
        temp = wa1.blueNorm();
        parc = fp / delta / temp / temp;

        /* depending on the sign of the function, update parl or paru. */

        if (fp > 0.)
            parl = std::max(parl,par);
        if (fp < 0.)
            paru = std::min(paru,par);

        /* compute an improved estimate for par. */

        /* Computing MAX */
        par = std::max(parl,par+parc);

        /* end of an iteration. */

    }

    /* termination. */

    if (iter == 0)
        par = 0.;
    return;
}