aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h
blob: 07c5ef01420b83443a795b5a02342d05843d2f7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// -*- coding: utf-8
// vim: set fileencoding=utf-8

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
#define EIGEN_HYBRIDNONLINEARSOLVER_H

namespace Eigen { 

namespace HybridNonLinearSolverSpace { 
    enum Status {
        Running = -1,
        ImproperInputParameters = 0,
        RelativeErrorTooSmall = 1,
        TooManyFunctionEvaluation = 2,
        TolTooSmall = 3,
        NotMakingProgressJacobian = 4,
        NotMakingProgressIterations = 5,
        UserAsked = 6
    };
}

/**
  * \ingroup NonLinearOptimization_Module
  * \brief Finds a zero of a system of n
  * nonlinear functions in n variables by a modification of the Powell
  * hybrid method ("dogleg").
  *
  * The user must provide a subroutine which calculates the
  * functions. The Jacobian is either provided by the user, or approximated
  * using a forward-difference method.
  *
  */
template<typename FunctorType, typename Scalar=double>
class HybridNonLinearSolver
{
public:
    typedef DenseIndex Index;

    HybridNonLinearSolver(FunctorType &_functor)
        : functor(_functor) { nfev=njev=iter = 0;  fnorm= 0.; useExternalScaling=false;}

    struct Parameters {
        Parameters()
            : factor(Scalar(100.))
            , maxfev(1000)
            , xtol(numext::sqrt(NumTraits<Scalar>::epsilon()))
            , nb_of_subdiagonals(-1)
            , nb_of_superdiagonals(-1)
            , epsfcn(Scalar(0.)) {}
        Scalar factor;
        Index maxfev;   // maximum number of function evaluation
        Scalar xtol;
        Index nb_of_subdiagonals;
        Index nb_of_superdiagonals;
        Scalar epsfcn;
    };
    typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
    typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
    /* TODO: if eigen provides a triangular storage, use it here */
    typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;

    HybridNonLinearSolverSpace::Status hybrj1(
            FVectorType  &x,
            const Scalar tol = numext::sqrt(NumTraits<Scalar>::epsilon())
            );

    HybridNonLinearSolverSpace::Status solveInit(FVectorType  &x);
    HybridNonLinearSolverSpace::Status solveOneStep(FVectorType  &x);
    HybridNonLinearSolverSpace::Status solve(FVectorType  &x);

    HybridNonLinearSolverSpace::Status hybrd1(
            FVectorType  &x,
            const Scalar tol = numext::sqrt(NumTraits<Scalar>::epsilon())
            );

    HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType  &x);
    HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType  &x);
    HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType  &x);

    void resetParameters(void) { parameters = Parameters(); }
    Parameters parameters;
    FVectorType  fvec, qtf, diag;
    JacobianType fjac;
    UpperTriangularType R;
    Index nfev;
    Index njev;
    Index iter;
    Scalar fnorm;
    bool useExternalScaling; 
private:
    FunctorType &functor;
    Index n;
    Scalar sum;
    bool sing;
    Scalar temp;
    Scalar delta;
    bool jeval;
    Index ncsuc;
    Scalar ratio;
    Scalar pnorm, xnorm, fnorm1;
    Index nslow1, nslow2;
    Index ncfail;
    Scalar actred, prered;
    FVectorType wa1, wa2, wa3, wa4;

    HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
};



template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
        FVectorType  &x,
        const Scalar tol
        )
{
    n = x.size();

    /* check the input parameters for errors. */
    if (n <= 0 || tol < 0.)
        return HybridNonLinearSolverSpace::ImproperInputParameters;

    resetParameters();
    parameters.maxfev = 100*(n+1);
    parameters.xtol = tol;
    diag.setConstant(n, 1.);
    useExternalScaling = true;
    return solve(x);
}

template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType  &x)
{
    n = x.size();

    wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
    fvec.resize(n);
    qtf.resize(n);
    fjac.resize(n, n);
    if (!useExternalScaling)
        diag.resize(n);
    eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");

    /* Function Body */
    nfev = 0;
    njev = 0;

    /*     check the input parameters for errors. */
    if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
        return HybridNonLinearSolverSpace::ImproperInputParameters;
    if (useExternalScaling)
        for (Index j = 0; j < n; ++j)
            if (diag[j] <= 0.)
                return HybridNonLinearSolverSpace::ImproperInputParameters;

    /*     evaluate the function at the starting point */
    /*     and calculate its norm. */
    nfev = 1;
    if ( functor(x, fvec) < 0)
        return HybridNonLinearSolverSpace::UserAsked;
    fnorm = fvec.stableNorm();

    /*     initialize iteration counter and monitors. */
    iter = 1;
    ncsuc = 0;
    ncfail = 0;
    nslow1 = 0;
    nslow2 = 0;

    return HybridNonLinearSolverSpace::Running;
}

template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType  &x)
{
    using std::abs;
    
    eigen_assert(x.size()==n); // check the caller is not cheating us

    Index j;
    std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);

    jeval = true;

    /* calculate the jacobian matrix. */
    if ( functor.df(x, fjac) < 0)
        return HybridNonLinearSolverSpace::UserAsked;
    ++njev;

    wa2 = fjac.colwise().blueNorm();

    /* on the first iteration and if external scaling is not used, scale according */
    /* to the norms of the columns of the initial jacobian. */
    if (iter == 1) {
        if (!useExternalScaling)
            for (j = 0; j < n; ++j)
                diag[j] = (wa2[j]==0.) ? 1. : wa2[j];

        /* on the first iteration, calculate the norm of the scaled x */
        /* and initialize the step bound delta. */
        xnorm = diag.cwiseProduct(x).stableNorm();
        delta = parameters.factor * xnorm;
        if (delta == 0.)
            delta = parameters.factor;
    }

    /* compute the qr factorization of the jacobian. */
    HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:

    /* copy the triangular factor of the qr factorization into r. */
    R = qrfac.matrixQR();

    /* accumulate the orthogonal factor in fjac. */
    fjac = qrfac.householderQ();

    /* form (q transpose)*fvec and store in qtf. */
    qtf = fjac.transpose() * fvec;

    /* rescale if necessary. */
    if (!useExternalScaling)
        diag = diag.cwiseMax(wa2);

    while (true) {
        /* determine the direction p. */
        internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);

        /* store the direction p and x + p. calculate the norm of p. */
        wa1 = -wa1;
        wa2 = x + wa1;
        pnorm = diag.cwiseProduct(wa1).stableNorm();

        /* on the first iteration, adjust the initial step bound. */
        if (iter == 1)
            delta = (std::min)(delta,pnorm);

        /* evaluate the function at x + p and calculate its norm. */
        if ( functor(wa2, wa4) < 0)
            return HybridNonLinearSolverSpace::UserAsked;
        ++nfev;
        fnorm1 = wa4.stableNorm();

        /* compute the scaled actual reduction. */
        actred = -1.;
        if (fnorm1 < fnorm) /* Computing 2nd power */
            actred = 1. - numext::abs2(fnorm1 / fnorm);

        /* compute the scaled predicted reduction. */
        wa3 = R.template triangularView<Upper>()*wa1 + qtf;
        temp = wa3.stableNorm();
        prered = 0.;
        if (temp < fnorm) /* Computing 2nd power */
            prered = 1. - numext::abs2(temp / fnorm);

        /* compute the ratio of the actual to the predicted reduction. */
        ratio = 0.;
        if (prered > 0.)
            ratio = actred / prered;

        /* update the step bound. */
        if (ratio < Scalar(.1)) {
            ncsuc = 0;
            ++ncfail;
            delta = Scalar(.5) * delta;
        } else {
            ncfail = 0;
            ++ncsuc;
            if (ratio >= Scalar(.5) || ncsuc > 1)
                delta = (std::max)(delta, pnorm / Scalar(.5));
            if (abs(ratio - 1.) <= Scalar(.1)) {
                delta = pnorm / Scalar(.5);
            }
        }

        /* test for successful iteration. */
        if (ratio >= Scalar(1e-4)) {
            /* successful iteration. update x, fvec, and their norms. */
            x = wa2;
            wa2 = diag.cwiseProduct(x);
            fvec = wa4;
            xnorm = wa2.stableNorm();
            fnorm = fnorm1;
            ++iter;
        }

        /* determine the progress of the iteration. */
        ++nslow1;
        if (actred >= Scalar(.001))
            nslow1 = 0;
        if (jeval)
            ++nslow2;
        if (actred >= Scalar(.1))
            nslow2 = 0;

        /* test for convergence. */
        if (delta <= parameters.xtol * xnorm || fnorm == 0.)
            return HybridNonLinearSolverSpace::RelativeErrorTooSmall;

        /* tests for termination and stringent tolerances. */
        if (nfev >= parameters.maxfev)
            return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
        if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
            return HybridNonLinearSolverSpace::TolTooSmall;
        if (nslow2 == 5)
            return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
        if (nslow1 == 10)
            return HybridNonLinearSolverSpace::NotMakingProgressIterations;

        /* criterion for recalculating jacobian. */
        if (ncfail == 2)
            break; // leave inner loop and go for the next outer loop iteration

        /* calculate the rank one modification to the jacobian */
        /* and update qtf if necessary. */
        wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
        wa2 = fjac.transpose() * wa4;
        if (ratio >= Scalar(1e-4))
            qtf = wa2;
        wa2 = (wa2-wa3)/pnorm;

        /* compute the qr factorization of the updated jacobian. */
        internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
        internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
        internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);

        jeval = false;
    }
    return HybridNonLinearSolverSpace::Running;
}

template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType  &x)
{
    HybridNonLinearSolverSpace::Status status = solveInit(x);
    if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
        return status;
    while (status==HybridNonLinearSolverSpace::Running)
        status = solveOneStep(x);
    return status;
}



template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
        FVectorType  &x,
        const Scalar tol
        )
{
    n = x.size();

    /* check the input parameters for errors. */
    if (n <= 0 || tol < 0.)
        return HybridNonLinearSolverSpace::ImproperInputParameters;

    resetParameters();
    parameters.maxfev = 200*(n+1);
    parameters.xtol = tol;

    diag.setConstant(n, 1.);
    useExternalScaling = true;
    return solveNumericalDiff(x);
}

template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType  &x)
{
    n = x.size();

    if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
    if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;

    wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
    qtf.resize(n);
    fjac.resize(n, n);
    fvec.resize(n);
    if (!useExternalScaling)
        diag.resize(n);
    eigen_assert( (!useExternalScaling || diag.size()==n) && "When useExternalScaling is set, the caller must provide a valid 'diag'");

    /* Function Body */
    nfev = 0;
    njev = 0;

    /*     check the input parameters for errors. */
    if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
        return HybridNonLinearSolverSpace::ImproperInputParameters;
    if (useExternalScaling)
        for (Index j = 0; j < n; ++j)
            if (diag[j] <= 0.)
                return HybridNonLinearSolverSpace::ImproperInputParameters;

    /*     evaluate the function at the starting point */
    /*     and calculate its norm. */
    nfev = 1;
    if ( functor(x, fvec) < 0)
        return HybridNonLinearSolverSpace::UserAsked;
    fnorm = fvec.stableNorm();

    /*     initialize iteration counter and monitors. */
    iter = 1;
    ncsuc = 0;
    ncfail = 0;
    nslow1 = 0;
    nslow2 = 0;

    return HybridNonLinearSolverSpace::Running;
}

template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType  &x)
{
    using std::sqrt;
    using std::abs;
    
    assert(x.size()==n); // check the caller is not cheating us

    Index j;
    std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);

    jeval = true;
    if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
    if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;

    /* calculate the jacobian matrix. */
    if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
        return HybridNonLinearSolverSpace::UserAsked;
    nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);

    wa2 = fjac.colwise().blueNorm();

    /* on the first iteration and if external scaling is not used, scale according */
    /* to the norms of the columns of the initial jacobian. */
    if (iter == 1) {
        if (!useExternalScaling)
            for (j = 0; j < n; ++j)
                diag[j] = (wa2[j]==0.) ? 1. : wa2[j];

        /* on the first iteration, calculate the norm of the scaled x */
        /* and initialize the step bound delta. */
        xnorm = diag.cwiseProduct(x).stableNorm();
        delta = parameters.factor * xnorm;
        if (delta == 0.)
            delta = parameters.factor;
    }

    /* compute the qr factorization of the jacobian. */
    HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:

    /* copy the triangular factor of the qr factorization into r. */
    R = qrfac.matrixQR();

    /* accumulate the orthogonal factor in fjac. */
    fjac = qrfac.householderQ();

    /* form (q transpose)*fvec and store in qtf. */
    qtf = fjac.transpose() * fvec;

    /* rescale if necessary. */
    if (!useExternalScaling)
        diag = diag.cwiseMax(wa2);

    while (true) {
        /* determine the direction p. */
        internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);

        /* store the direction p and x + p. calculate the norm of p. */
        wa1 = -wa1;
        wa2 = x + wa1;
        pnorm = diag.cwiseProduct(wa1).stableNorm();

        /* on the first iteration, adjust the initial step bound. */
        if (iter == 1)
            delta = (std::min)(delta,pnorm);

        /* evaluate the function at x + p and calculate its norm. */
        if ( functor(wa2, wa4) < 0)
            return HybridNonLinearSolverSpace::UserAsked;
        ++nfev;
        fnorm1 = wa4.stableNorm();

        /* compute the scaled actual reduction. */
        actred = -1.;
        if (fnorm1 < fnorm) /* Computing 2nd power */
            actred = 1. - numext::abs2(fnorm1 / fnorm);

        /* compute the scaled predicted reduction. */
        wa3 = R.template triangularView<Upper>()*wa1 + qtf;
        temp = wa3.stableNorm();
        prered = 0.;
        if (temp < fnorm) /* Computing 2nd power */
            prered = 1. - numext::abs2(temp / fnorm);

        /* compute the ratio of the actual to the predicted reduction. */
        ratio = 0.;
        if (prered > 0.)
            ratio = actred / prered;

        /* update the step bound. */
        if (ratio < Scalar(.1)) {
            ncsuc = 0;
            ++ncfail;
            delta = Scalar(.5) * delta;
        } else {
            ncfail = 0;
            ++ncsuc;
            if (ratio >= Scalar(.5) || ncsuc > 1)
                delta = (std::max)(delta, pnorm / Scalar(.5));
            if (abs(ratio - 1.) <= Scalar(.1)) {
                delta = pnorm / Scalar(.5);
            }
        }

        /* test for successful iteration. */
        if (ratio >= Scalar(1e-4)) {
            /* successful iteration. update x, fvec, and their norms. */
            x = wa2;
            wa2 = diag.cwiseProduct(x);
            fvec = wa4;
            xnorm = wa2.stableNorm();
            fnorm = fnorm1;
            ++iter;
        }

        /* determine the progress of the iteration. */
        ++nslow1;
        if (actred >= Scalar(.001))
            nslow1 = 0;
        if (jeval)
            ++nslow2;
        if (actred >= Scalar(.1))
            nslow2 = 0;

        /* test for convergence. */
        if (delta <= parameters.xtol * xnorm || fnorm == 0.)
            return HybridNonLinearSolverSpace::RelativeErrorTooSmall;

        /* tests for termination and stringent tolerances. */
        if (nfev >= parameters.maxfev)
            return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
        if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
            return HybridNonLinearSolverSpace::TolTooSmall;
        if (nslow2 == 5)
            return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
        if (nslow1 == 10)
            return HybridNonLinearSolverSpace::NotMakingProgressIterations;

        /* criterion for recalculating jacobian. */
        if (ncfail == 2)
            break; // leave inner loop and go for the next outer loop iteration

        /* calculate the rank one modification to the jacobian */
        /* and update qtf if necessary. */
        wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
        wa2 = fjac.transpose() * wa4;
        if (ratio >= Scalar(1e-4))
            qtf = wa2;
        wa2 = (wa2-wa3)/pnorm;

        /* compute the qr factorization of the updated jacobian. */
        internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
        internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
        internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);

        jeval = false;
    }
    return HybridNonLinearSolverSpace::Running;
}

template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType  &x)
{
    HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
    if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
        return status;
    while (status==HybridNonLinearSolverSpace::Running)
        status = solveNumericalDiffOneStep(x);
    return status;
}

} // end namespace Eigen

#endif // EIGEN_HYBRIDNONLINEARSOLVER_H

//vim: ai ts=4 sts=4 et sw=4