aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/NonLinear/covar.h
blob: 3c163dd685993e736520dc9675f6101a26435b4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    template <typename Scalar>
void ei_covar(
        Matrix< Scalar, Dynamic, Dynamic > &r,
        const VectorXi &ipvt,
        Scalar tol = ei_sqrt(epsilon<Scalar>()) )
{
    /* Local variables */
    int i, j, k, l, ii, jj;
    int sing;
    Scalar temp;

    /* Function Body */
    const int n = r.cols();
    const Scalar tolr = tol * ei_abs(r[0]);
    Matrix< Scalar, Dynamic, 1 > wa(n);
    assert(ipvt.size()==n);

    /*     form the inverse of r in the full upper triangle of r. */

    l = -1;
    for (k = 0; k < n; ++k)
        if (ei_abs(r(k,k)) > tolr) {
            r(k,k) = 1. / r(k,k);
            for (j = 0; j <= k-1; ++j) {
                temp = r(k,k) * r(j,k);
                r(j,k) = 0.;
                for (i = 0; i <= j; ++i) {
                    r(i,k) -= temp * r(i,j);
                }
            }
            l = k;
        }

    /*     form the full upper triangle of the inverse of (r transpose)*r */
    /*     in the full upper triangle of r. */

    for (k = 0; k <= l; ++k) {
        for (j = 0; j <= k-1; ++j) {
            temp = r(j,k);
            for (i = 0; i <= j; ++i)
                r(i,j) += temp * r(i,k);
        }
        temp = r(k,k);
        for (i = 0; i <= k; ++i)
            r(i,k) = temp * r(i,k);
    }

    /*     form the full lower triangle of the covariance matrix */
    /*     in the strict lower triangle of r and in wa. */

    for (j = 0; j < n; ++j) {
        jj = ipvt[j]-1;
        sing = j > l;
        for (i = 0; i <= j; ++i) {
            if (sing)
                r(i,j) = 0.;
            ii = ipvt[i]-1;
            if (ii > jj)
                r(ii,jj) = r(i,j);
            if (ii < jj)
                r(jj,ii) = r(i,j);
        }
        wa[jj] = r(j,j);
    }

    /*     symmetrize the covariance matrix in r. */

    for (j = 0; j < n; ++j) {
        for (i = 0; i <= j; ++i)
            r(i,j) = r(j,i);
        r(j,j) = wa[j];
    }
}