aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h
blob: 89022574407c574eafa79b15704da9165ee6817e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_POWER_BASE
#define EIGEN_MATRIX_POWER_BASE

namespace Eigen {

#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
  typedef MatrixPowerBase<Derived, MatrixType> Base; \
  using Base::RowsAtCompileTime; \
  using Base::ColsAtCompileTime; \
  using Base::Options; \
  using Base::MaxRowsAtCompileTime; \
  using Base::MaxColsAtCompileTime; \
  typedef typename Base::Scalar     Scalar; \
  typedef typename Base::RealScalar RealScalar; \
  typedef typename Base::RealArray  RealArray;

#define EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(Derived) \
  using Base::m_A; \
  using Base::m_tmp1; \
  using Base::m_tmp2; \
  using Base::m_conditionNumber;

template<typename Derived, typename MatrixType>
class MatrixPowerBaseReturnValue : public ReturnByValue<MatrixPowerBaseReturnValue<Derived,MatrixType> >
{
  public:
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

    MatrixPowerBaseReturnValue(Derived& pow, RealScalar p) : m_pow(pow), m_p(p)
    { }

    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { m_pow.compute(res, m_p); }

    template<typename OtherDerived>
    const MatrixPowerProduct<Derived,MatrixType,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
    { return MatrixPowerProduct<Derived,MatrixType,OtherDerived>(m_pow, b.derived(), m_p); }

    Index rows() const { return m_pow.rows(); }
    Index cols() const { return m_pow.cols(); }

  private:
    Derived& m_pow;
    const RealScalar m_p;
    MatrixPowerBaseReturnValue& operator=(const MatrixPowerBaseReturnValue&);
};

template<typename Derived, typename MatrixType>
class MatrixPowerBase
{
  private:
    Derived& derived() { return *static_cast<Derived*>(this); }

  public:
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

    explicit MatrixPowerBase(const MatrixType& A) :
      m_A(A),
      m_conditionNumber(0)
    { eigen_assert(A.rows() == A.cols()); }

  #ifndef EIGEN_PARSED_BY_DOXYGEN
    const MatrixPowerBaseReturnValue<Derived,MatrixType> operator()(RealScalar p)
    { return MatrixPowerBaseReturnValue<Derived,MatrixType>(derived(), p); }
  #endif

    void compute(MatrixType& res, RealScalar p)
    { derived().compute(res,p); }

    template<typename OtherDerived, typename ResultType>
    void compute(const OtherDerived& b, ResultType& res, RealScalar p)
    { derived().compute(b,res,p); }
    
    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  protected:
    typedef Array<RealScalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> RealArray;

    typename MatrixType::Nested m_A;
    MatrixType m_tmp1, m_tmp2;
    RealScalar m_conditionNumber;
};

template<typename Derived, typename Lhs, typename Rhs>
class MatrixPowerProduct : public MatrixBase<MatrixPowerProduct<Derived,Lhs,Rhs> >
{
  public:
    typedef MatrixBase<MatrixPowerProduct> Base;
    EIGEN_DENSE_PUBLIC_INTERFACE(MatrixPowerProduct)

    MatrixPowerProduct(Derived& pow, const Rhs& b, RealScalar p) :
      m_pow(pow),
      m_b(b),
      m_p(p)
    { eigen_assert(pow.cols() == b.rows()); }

    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { m_pow.compute(m_b, res, m_p); }

    inline Index rows() const { return m_pow.rows(); }
    inline Index cols() const { return m_b.cols(); }

  private:
    Derived& m_pow;
    typename Rhs::Nested m_b;
    const RealScalar m_p;
};

template<typename Derived>
template<typename MatrixPower, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const MatrixPowerProduct<MatrixPower,Lhs,Rhs>& other)
{
  other.evalTo(derived());
  return derived();
}

namespace internal {

template<typename Derived, typename MatrixType>
struct traits<MatrixPowerBaseReturnValue<Derived, MatrixType> >
{ typedef MatrixType ReturnType; };

template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<MatrixPowerProduct<Derived,_Lhs,_Rhs> >
{
  typedef MatrixXpr XprKind;
  typedef typename remove_all<_Lhs>::type Lhs;
  typedef typename remove_all<_Rhs>::type Rhs;
  typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
  typedef Dense StorageKind;
  typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;

  enum {
    RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
    ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
    MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
    Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
	  | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
    CoeffReadCost = 0
  };
};

template<int IsComplex>
struct recompose_complex_schur
{
  template<typename ResultType, typename MatrixType>
  static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
  { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
};

template<>
struct recompose_complex_schur<0>
{
  template<typename ResultType, typename MatrixType>
  static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
  { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
};

template<typename Scalar, int IsComplex = NumTraits<Scalar>::IsComplex>
struct matrix_power_unwinder
{
  static inline Scalar run(const Scalar& eival, const Scalar& eival0, int unwindingNumber)
  { return internal::atanh2(eival-eival0, eival+eival0) + Scalar(0, M_PI*unwindingNumber); }
};

template<typename Scalar>
struct matrix_power_unwinder<Scalar,0>
{
  static inline Scalar run(Scalar eival, Scalar eival0, int)
  { return internal::atanh2(eival-eival0, eival+eival0); }
};

template<typename T>
inline int binary_powering_cost(T p, int* squarings)
{
  int applyings=0, tmp;

  frexp(p, squarings);
  --*squarings;

  while (std::frexp(p, &tmp), tmp > 0) {
    p -= std::ldexp(static_cast<T>(0.5), tmp);
    ++applyings;
  }
  return applyings;
}

inline int matrix_power_get_pade_degree(float normIminusT)
{
  const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
  int degree = 3;
  for (; degree <= 4; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

inline int matrix_power_get_pade_degree(double normIminusT)
{
  const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
      1.999045567181744e-1, 2.789358995219730e-1 };
  int degree = 3;
  for (; degree <= 7; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

inline int matrix_power_get_pade_degree(long double normIminusT)
{
#if   LDBL_MANT_DIG == 53
  const int maxPadeDegree = 7;
  const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
      1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
  const int maxPadeDegree = 8;
  const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
      6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
      1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
      2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
      1.1016843812851143391275867258512e-1L };
#else
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
      6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
      9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
      3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
      9.134603732914548552537150753385375e-2L };
#endif
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

} // namespace internal

template<typename MatrixType>
class MatrixPowerTriangularAtomic
{
  private:
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Array<Scalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> ArrayType;

    const MatrixType& m_A;

    static void computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p);
    void compute2x2(MatrixType& res, RealScalar p) const;
    void computeBig(MatrixType& res, RealScalar p) const;

  public:
    explicit MatrixPowerTriangularAtomic(const MatrixType& T);
    void compute(MatrixType& res, RealScalar p) const;
};

template<typename MatrixType>
MatrixPowerTriangularAtomic<MatrixType>::MatrixPowerTriangularAtomic(const MatrixType& T) :
  m_A(T)
{ eigen_assert(T.rows() == T.cols()); }

template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::compute(MatrixType& res, RealScalar p) const
{
  switch (m_A.rows()) {
    case 0:
      break;
    case 1:
      res(0,0) = std::pow(m_A(0,0), p);
      break;
    case 2:
      compute2x2(res, p);
      break;
    default:
      computeBig(res, p);
  }
}

template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p)
{
  int i = degree<<1;
  res = (p-degree) / ((i-1)<<1) * IminusT;
  for (--i; i; --i) {
    res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
	.solve((i==1 ? -p : i&1 ? (-p-(i>>1))/(i<<1) : (p-(i>>1))/((i-1)<<1)) * IminusT).eval();
  }
  res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}

template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
{
  using std::abs;
  using std::pow;
  
  ArrayType logTdiag = m_A.diagonal().array().log();
  res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);

  for (Index i=1; i < m_A.cols(); ++i) {
    res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
    if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) {
      res.coeffRef(i-1,i) = p * pow(m_A.coeff(i-1,i), p-1);
    }
    else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) {
      res.coeffRef(i-1,i) = m_A.coeff(i-1,i) * (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
    }
    else {
      int unwindingNumber = std::ceil((internal::imag(logTdiag[i]-logTdiag[i-1]) - M_PI) / (2*M_PI));
      Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_A.coeff(i,i), m_A.coeff(i-1,i-1), unwindingNumber);
      res.coeffRef(i-1,i) = m_A.coeff(i-1,i) * RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) *
	  std::sinh(p * w) / (m_A.coeff(i,i) - m_A.coeff(i-1,i-1));
    }
  }
}

template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealScalar p) const
{
  const int digits = std::numeric_limits<RealScalar>::digits;
  const RealScalar maxNormForPade = digits <=  24? 4.3386528e-1f:                           // sigle precision
				    digits <=  53? 2.789358995219730e-1:                    // double precision
				    digits <=  64? 2.4471944416607995472e-1L:               // extended precision
				    digits <= 106? 1.1016843812851143391275867258512e-1L:   // double-double
						   9.134603732914548552537150753385375e-2L; // quadruple precision
  MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
  RealScalar normIminusT;
  int degree, degree2, numberOfSquareRoots = 0;
  bool hasExtraSquareRoot = false;

  while (true) {
    IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
    normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
    if (normIminusT < maxNormForPade) {
      degree = internal::matrix_power_get_pade_degree(normIminusT);
      degree2 = internal::matrix_power_get_pade_degree(normIminusT/2);
      if (degree - degree2 <= 1 || hasExtraSquareRoot)
	break;
      hasExtraSquareRoot = true;
    }
    MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }
  computePade(degree, IminusT, res, p);

  for (; numberOfSquareRoots; --numberOfSquareRoots) {
    compute2x2(res, std::ldexp(p,-numberOfSquareRoots));
    res = res.template triangularView<Upper>() * res;
  }
  compute2x2(res, p);
}

} // namespace Eigen

#endif // EIGEN_MATRIX_POWER