1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER
namespace Eigen {
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
*
* This class is capable of computing real/complex matrices raised to
* an arbitrary real power. Meanwhile, it saves the result of Schur
* decomposition if an non-integral power has even been calculated.
* Therefore, if you want to compute multiple (>= 2) matrix powers
* for the same matrix, using the class directly is more efficient than
* calling MatrixBase::pow().
*
* Example:
* \include MatrixPower_optimal.cpp
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType> class MatrixPower
{
private:
static const int Rows = MatrixType::RowsAtCompileTime;
static const int Cols = MatrixType::ColsAtCompileTime;
static const int Options = MatrixType::Options;
static const int MaxRows = MatrixType::MaxRowsAtCompileTime;
static const int MaxCols = MatrixType::MaxColsAtCompileTime;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<std::complex<RealScalar>,Rows,Cols,Options,MaxRows,MaxCols> ComplexMatrix;
const MatrixType* m_A;
MatrixType m_tmp1, m_tmp2;
ComplexMatrix m_T, m_U, m_fT;
char m_flag;
RealScalar modfAndInit(RealScalar, RealScalar*);
template<typename Derived, typename ResultType>
void apply(const Derived&, ResultType&, bool&);
template<typename ResultType>
void computeIntPower(ResultType&, RealScalar);
template<typename Derived, typename ResultType>
void computeIntPower(const Derived&, ResultType&, RealScalar);
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*/
explicit MatrixPower(const MatrixType& A);
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*/
template<typename Derived>
explicit MatrixPower(const MatrixBase<Derived>& A);
/** \brief Destructor. */
~MatrixPower();
/**
* \brief Return the expression \f$ A^p \f$.
*
* \param[in] p exponent, a real scalar.
*/
const MatrixPowerReturnValue<MatrixType> operator()(RealScalar p)
{ return MatrixPowerReturnValue<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
*
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p \f$ where A is specified in the
* constructor.
*/
void compute(MatrixType& res, RealScalar p);
/**
* \brief Compute the matrix power multiplied by another matrix.
*
* \param[in] b a matrix with the same rows as A.
* \param[in] p exponent, a real scalar.
* \param[in] noalias
* \param[out] res \f$ A^p b \f$, where A is specified in the
* constructor.
*/
template<typename Derived, typename ResultType>
void compute(const Derived& b, ResultType& res, RealScalar p);
Index rows() const { return m_A->rows(); }
Index cols() const { return m_A->cols(); }
};
template<typename MatrixType>
MatrixPower<MatrixType>::MatrixPower(const MatrixType& A) :
m_A(&A),
m_flag(0)
{ /* empty body */ }
template<typename MatrixType>
template<typename Derived>
MatrixPower<MatrixType>::MatrixPower(const MatrixBase<Derived>& A) :
m_A(new MatrixType(A)),
m_flag(2)
{ /* empty body */ }
template<typename MatrixType>
MatrixPower<MatrixType>::~MatrixPower()
{ if (m_flag & 2) delete m_A; }
template<typename MatrixType>
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
{
switch (m_A->cols()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_A->coeff(0,0), p);
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
res = MatrixType::Identity(m_A->rows(), m_A->cols());
computeIntPower(res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::compute(const Derived& b, ResultType& res, RealScalar p)
{
switch (m_A->cols()) {
case 0:
break;
case 1:
res = std::pow(m_A->coeff(0,0), p) * b;
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
computeIntPower(b, res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
typename MatrixType::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
static RealScalar maxAbsEival, minAbsEival;
*intpart = std::floor(x);
RealScalar res = x - *intpart;
if (!(m_flag & 1) && res) {
const ComplexSchur<MatrixType> schurOfA(*m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
m_flag |= 1;
const Array<RealScalar,EIGEN_SIZE_MIN_PREFER_FIXED(Rows,Cols),1,ColMajor,EIGEN_SIZE_MIN_PREFER_FIXED(MaxRows,MaxCols)>
absTdiag = m_T.diagonal().array().abs();
maxAbsEival = absTdiag.maxCoeff();
minAbsEival = absTdiag.minCoeff();
}
if (res > RealScalar(0.5) && res > (1-res) * std::pow(maxAbsEival/minAbsEival, res)) {
--res;
++*intpart;
}
return res;
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::apply(const Derived& b, ResultType& res, bool& init)
{
if (init)
res = m_tmp1 * res;
else {
init = true;
res.noalias() = m_tmp1 * b;
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
RealScalar pp = std::abs(p);
if (p<0) m_tmp1 = m_A->inverse();
else m_tmp1 = *m_A;
while (pp >= 1) {
if (std::fmod(pp, 2) >= 1)
res = m_tmp1 * res;
m_tmp1 *= m_tmp1;
pp /= 2;
}
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
{
if (b.cols() >= m_A->cols()) {
m_tmp2 = MatrixType::Identity(m_A->rows(), m_A->cols());
computeIntPower(m_tmp2, p);
res.noalias() = m_tmp2 * b;
}
else {
RealScalar pp = std::abs(p);
int squarings, applyings = internal::binary_powering_cost(pp, &squarings);
bool init = false;
if (p==0) {
res = b;
return;
}
else if (p>0) {
m_tmp1 = *m_A;
}
else if (m_A->cols() > 2 && b.cols()*(pp-applyings) <= m_A->cols()*squarings) {
PartialPivLU<MatrixType> A(*m_A);
res = A.solve(b);
for (--pp; pp >= 1; --pp)
res = A.solve(res);
return;
}
else {
m_tmp1 = m_A->inverse();
}
while (b.cols()*(pp-applyings) > m_A->cols()*squarings) {
if (std::fmod(pp, 2) >= 1) {
apply(b, res, init);
--applyings;
}
m_tmp1 *= m_tmp1;
--squarings;
pp /= 2;
}
for (; pp >= 1; --pp)
apply(b, res, init);
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
if (p) {
MatrixPowerTriangularAtomic<ComplexMatrix>(m_T).compute(m_fT, p);
internal::recompose_complex_schur<NumTraits<Scalar>::IsComplex>::run(m_tmp1, m_fT, m_U);
res = m_tmp1 * res;
}
}
template<typename Lhs, typename Rhs>
class MatrixPowerMatrixProduct : public MatrixPowerProductBase<MatrixPowerMatrixProduct<Lhs,Rhs>,Lhs,Rhs>
{
public:
EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(MatrixPowerMatrixProduct)
MatrixPowerMatrixProduct(MatrixPower<Lhs>& pow, const Rhs& b, RealScalar p)
: m_pow(pow), m_b(b), m_p(p) { }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(m_b, res, m_p); }
Index rows() const { return m_b.rows(); }
Index cols() const { return m_b.cols(); }
private:
MatrixPower<Lhs>& m_pow;
const Rhs& m_b;
const RealScalar m_p;
MatrixPowerMatrixProduct& operator=(const MatrixPowerMatrixProduct&);
};
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix (expression).
*
* \tparam Derived type of the base, a matrix (expression).
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::pow() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived>
class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Derived> >
{
public:
typedef typename Derived::PlainObject PlainObject;
typedef typename Derived::RealScalar RealScalar;
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p)
: m_pow(new MatrixPower<PlainObject>(A)), m_p(p), m_del(true) { }
MatrixPowerReturnValue(MatrixPower<PlainObject>& pow, RealScalar p)
: m_pow(&pow), m_p(p), m_del(false) { }
~MatrixPowerReturnValue()
{ if (m_del) delete m_pow; }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
* constructor.
*/
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow->compute(res, m_p); }
template<typename OtherDerived>
const MatrixPowerMatrixProduct<PlainObject,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
{ return MatrixPowerMatrixProduct<PlainObject,OtherDerived>(*m_pow, b.derived(), m_p); }
Index rows() const { return m_pow->rows(); }
Index cols() const { return m_pow->cols(); }
private:
MatrixPower<PlainObject>* m_pow;
const RealScalar m_p;
const bool m_del; // whether to delete the pointer at destruction
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};
namespace internal {
template<typename MatrixType, typename Derived>
struct nested<MatrixPowerMatrixProduct<MatrixType,Derived> >
{ typedef typename MatrixPowerMatrixProduct<MatrixType,Derived>::PlainObject const& type; };
template<typename Derived>
struct traits<MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
template<typename Lhs, typename Rhs>
struct traits<MatrixPowerMatrixProduct<Lhs,Rhs> >
: traits<MatrixPowerProductBase<MatrixPowerMatrixProduct<Lhs,Rhs>,Lhs,Rhs> >
{ };
}
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
{
eigen_assert(rows() == cols());
return MatrixPowerReturnValue<Derived>(derived(), p);
}
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER
|