aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
blob: b91d8632a8a77ff3e26f1265612a46a8e88472ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER

namespace Eigen {

template<typename MatrixType> class MatrixPower;

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Proxy for the matrix power of some matrix.
 *
 * \tparam MatrixType  type of the base, a matrix.
 *
 * This class holds the arguments to the matrix power until it is
 * assigned or evaluated for some other reason (so the argument
 * should not be changed in the meantime). It is the return type of
 * MatrixPower::operator() and related functions and most of the
 * time this is the only way it is used.
 */
/* TODO This class is only used by MatrixPower, so it should be nested
 * into MatrixPower, like MatrixPower::ReturnValue. However, my
 * compiler complained about unused template parameter in the
 * following declaration in namespace internal.
 *
 * template<typename MatrixType>
 * struct traits<MatrixPower<MatrixType>::ReturnValue>;
 */
template<typename MatrixType>
class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> >
{
  public:
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

    /**
     * \brief Constructor.
     *
     * \param[in] pow  %MatrixPower storing the base.
     * \param[in] p    scalar, the exponent of the matrix power.
     */
    MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
    { }

    /**
     * \brief Compute the matrix power.
     *
     * \param[out] result
     */
    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { m_pow.compute(res, m_p); }

    Index rows() const { return m_pow.rows(); }
    Index cols() const { return m_pow.cols(); }

  private:
    MatrixPower<MatrixType>& m_pow;
    const RealScalar m_p;
};

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Class for computing matrix powers.
 *
 * \tparam MatrixType  type of the base, expected to be an instantiation
 * of the Matrix class template.
 *
 * This class is capable of computing triangular real/complex matrices
 * raised to a power in the interval \f$ (-1, 1) \f$.
 *
 * \note Currently this class is only used by MatrixPower. One may
 * insist that this be nested into MatrixPower. This class is here to
 * faciliate future development of triangular matrix functions.
 */
template<typename MatrixType>
class MatrixPowerAtomic : internal::noncopyable
{
  private:
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef std::complex<RealScalar> ComplexScalar;
    typedef typename MatrixType::Index Index;
    typedef Block<MatrixType,Dynamic,Dynamic> ResultType;

    const MatrixType& m_A;
    RealScalar m_p;

    void computePade(int degree, const MatrixType& IminusT, ResultType& res) const;
    void compute2x2(ResultType& res, RealScalar p) const;
    void computeBig(ResultType& res) const;
    static int getPadeDegree(float normIminusT);
    static int getPadeDegree(double normIminusT);
    static int getPadeDegree(long double normIminusT);
    static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
    static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);

  public:
    /**
     * \brief Constructor.
     *
     * \param[in] T  the base of the matrix power.
     * \param[in] p  the exponent of the matrix power, should be in
     * \f$ (-1, 1) \f$.
     *
     * The class stores a reference to T, so it should not be changed
     * (or destroyed) before evaluation. Only the upper triangular
     * part of T is read.
     */
    MatrixPowerAtomic(const MatrixType& T, RealScalar p);
    
    /**
     * \brief Compute the matrix power.
     *
     * \param[out] res  \f$ A^p \f$ where A and p are specified in the
     * constructor.
     */
    void compute(ResultType& res) const;
};

template<typename MatrixType>
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
  m_A(T), m_p(p)
{
  eigen_assert(T.rows() == T.cols());
  eigen_assert(p > -1 && p < 1);
}

template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const
{
  using std::pow;
  switch (m_A.rows()) {
    case 0:
      break;
    case 1:
      res(0,0) = pow(m_A(0,0), m_p);
      break;
    case 2:
      compute2x2(res, m_p);
      break;
    default:
      computeBig(res);
  }
}

template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const
{
  int i = 2*degree;
  res = (m_p-degree) / (2*i-2) * IminusT;

  for (--i; i; --i) {
    res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
	.solve((i==1 ? -m_p : i&1 ? (-m_p-i/2)/(2*i) : (m_p-i/2)/(2*i-2)) * IminusT).eval();
  }
  res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}

// This function assumes that res has the correct size (see bug 614)
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const
{
  using std::abs;
  using std::pow;
  res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);

  for (Index i=1; i < m_A.cols(); ++i) {
    res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
    if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
      res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
    else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
      res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
    else
      res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
    res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
  }
}

template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
{
  using std::ldexp;
  const int digits = std::numeric_limits<RealScalar>::digits;
  const RealScalar maxNormForPade = digits <=  24? 4.3386528e-1f:                           // sigle precision
				    digits <=  53? 2.789358995219730e-1:                    // double precision
				    digits <=  64? 2.4471944416607995472e-1L:               // extended precision
				    digits <= 106? 1.1016843812851143391275867258512e-1L:   // double-double
						   9.134603732914548552537150753385375e-2L; // quadruple precision
  MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
  RealScalar normIminusT;
  int degree, degree2, numberOfSquareRoots = 0;
  bool hasExtraSquareRoot = false;

  for (Index i=0; i < m_A.cols(); ++i)
    eigen_assert(m_A(i,i) != RealScalar(0));

  while (true) {
    IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
    normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
    if (normIminusT < maxNormForPade) {
      degree = getPadeDegree(normIminusT);
      degree2 = getPadeDegree(normIminusT/2);
      if (degree - degree2 <= 1 || hasExtraSquareRoot)
	break;
      hasExtraSquareRoot = true;
    }
    matrix_sqrt_triangular(T, sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }
  computePade(degree, IminusT, res);

  for (; numberOfSquareRoots; --numberOfSquareRoots) {
    compute2x2(res, ldexp(m_p, -numberOfSquareRoots));
    res = res.template triangularView<Upper>() * res;
  }
  compute2x2(res, m_p);
}
  
template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
{
  const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
  int degree = 3;
  for (; degree <= 4; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
{
  const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
      1.999045567181744e-1, 2.789358995219730e-1 };
  int degree = 3;
  for (; degree <= 7; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
{
#if   LDBL_MANT_DIG == 53
  const int maxPadeDegree = 7;
  const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
      1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
  const int maxPadeDegree = 8;
  const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
      6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
      1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
      2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
      1.1016843812851143391275867258512e-1L };
#else
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
      6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
      9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
      3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
      9.134603732914548552537150753385375e-2L };
#endif
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
{
  using std::ceil;
  using std::exp;
  using std::log;
  using std::sinh;

  ComplexScalar logCurr = log(curr);
  ComplexScalar logPrev = log(prev);
  int unwindingNumber = ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
  ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(RealScalar(0), RealScalar(M_PI*unwindingNumber));
  return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev);
}

template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
{
  using std::exp;
  using std::log;
  using std::sinh;

  RealScalar w = numext::atanh2(curr - prev, curr + prev);
  return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev);
}

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Class for computing matrix powers.
 *
 * \tparam MatrixType  type of the base, expected to be an instantiation
 * of the Matrix class template.
 *
 * This class is capable of computing real/complex matrices raised to
 * an arbitrary real power. Meanwhile, it saves the result of Schur
 * decomposition if an non-integral power has even been calculated.
 * Therefore, if you want to compute multiple (>= 2) matrix powers
 * for the same matrix, using the class directly is more efficient than
 * calling MatrixBase::pow().
 *
 * Example:
 * \include MatrixPower_optimal.cpp
 * Output: \verbinclude MatrixPower_optimal.out
 */
template<typename MatrixType>
class MatrixPower : internal::noncopyable
{
  private:
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

  public:
    /**
     * \brief Constructor.
     *
     * \param[in] A  the base of the matrix power.
     *
     * The class stores a reference to A, so it should not be changed
     * (or destroyed) before evaluation.
     */
    explicit MatrixPower(const MatrixType& A) :
      m_A(A),
      m_conditionNumber(0),
      m_rank(A.cols()),
      m_nulls(0)
    { eigen_assert(A.rows() == A.cols()); }

    /**
     * \brief Returns the matrix power.
     *
     * \param[in] p  exponent, a real scalar.
     * \return The expression \f$ A^p \f$, where A is specified in the
     * constructor.
     */
    const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p)
    { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); }

    /**
     * \brief Compute the matrix power.
     *
     * \param[in]  p    exponent, a real scalar.
     * \param[out] res  \f$ A^p \f$ where A is specified in the
     * constructor.
     */
    template<typename ResultType>
    void compute(ResultType& res, RealScalar p);
    
    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    typedef std::complex<RealScalar> ComplexScalar;
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, MatrixType::Options,
              MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix;

    /** \brief Reference to the base of matrix power. */
    typename MatrixType::Nested m_A;

    /** \brief Temporary storage. */
    MatrixType m_tmp;

    /** \brief Store the result of Schur decomposition. */
    ComplexMatrix m_T, m_U;
    
    /** \brief Store fractional power of m_T. */
    ComplexMatrix m_fT;

    /**
     * \brief Condition number of m_A.
     *
     * It is initialized as 0 to avoid performing unnecessary Schur
     * decomposition, which is the bottleneck.
     */
    RealScalar m_conditionNumber;

    /** \brief Rank of m_A. */
    Index m_rank;
    
    /** \brief Rank deficiency of m_A. */
    Index m_nulls;

    /**
     * \brief Split p into integral part and fractional part.
     *
     * \param[in]  p        The exponent.
     * \param[out] p        The fractional part ranging in \f$ (-1, 1) \f$.
     * \param[out] intpart  The integral part.
     *
     * Only if the fractional part is nonzero, it calls initialize().
     */
    void split(RealScalar& p, RealScalar& intpart);

    /** \brief Perform Schur decomposition for fractional power. */
    void initialize();

    template<typename ResultType>
    void computeIntPower(ResultType& res, RealScalar p);

    template<typename ResultType>
    void computeFracPower(ResultType& res, RealScalar p);

    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    static void revertSchur(
        Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
        const ComplexMatrix& T,
        const ComplexMatrix& U);

    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    static void revertSchur(
        Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
        const ComplexMatrix& T,
        const ComplexMatrix& U);
};

template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
  using std::pow;
  switch (cols()) {
    case 0:
      break;
    case 1:
      res(0,0) = pow(m_A.coeff(0,0), p);
      break;
    default:
      RealScalar intpart;
      split(p, intpart);

      res = MatrixType::Identity(rows(), cols());
      computeIntPower(res, intpart);
      if (p) computeFracPower(res, p);
  }
}

template<typename MatrixType>
void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart)
{
  using std::floor;
  using std::pow;

  intpart = floor(p);
  p -= intpart;

  // Perform Schur decomposition if it is not yet performed and the power is
  // not an integer.
  if (!m_conditionNumber && p)
    initialize();

  // Choose the more stable of intpart = floor(p) and intpart = ceil(p).
  if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) {
    --p;
    ++intpart;
  }
}

template<typename MatrixType>
void MatrixPower<MatrixType>::initialize()
{
  const ComplexSchur<MatrixType> schurOfA(m_A);
  JacobiRotation<ComplexScalar> rot;
  ComplexScalar eigenvalue;

  m_fT.resizeLike(m_A);
  m_T = schurOfA.matrixT();
  m_U = schurOfA.matrixU();
  m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff();

  // Move zero eigenvalues to the bottom right corner.
  for (Index i = cols()-1; i>=0; --i) {
    if (m_rank <= 2)
      return;
    if (m_T.coeff(i,i) == RealScalar(0)) {
      for (Index j=i+1; j < m_rank; ++j) {
        eigenvalue = m_T.coeff(j,j);
        rot.makeGivens(m_T.coeff(j-1,j), eigenvalue);
        m_T.applyOnTheRight(j-1, j, rot);
        m_T.applyOnTheLeft(j-1, j, rot.adjoint());
        m_T.coeffRef(j-1,j-1) = eigenvalue;
        m_T.coeffRef(j,j) = RealScalar(0);
        m_U.applyOnTheRight(j-1, j, rot);
      }
      --m_rank;
    }
  }

  m_nulls = rows() - m_rank;
  if (m_nulls) {
    eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero()
        && "Base of matrix power should be invertible or with a semisimple zero eigenvalue.");
    m_fT.bottomRows(m_nulls).fill(RealScalar(0));
  }
}

template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
  using std::abs;
  using std::fmod;
  RealScalar pp = abs(p);

  if (p<0) 
    m_tmp = m_A.inverse();
  else     
    m_tmp = m_A;

  while (true) {
    if (fmod(pp, 2) >= 1)
      res = m_tmp * res;
    pp /= 2;
    if (pp < 1)
      break;
    m_tmp *= m_tmp;
  }
}

template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
  Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank);
  eigen_assert(m_conditionNumber);
  eigen_assert(m_rank + m_nulls == rows());

  MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp);
  if (m_nulls) {
    m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>()
        .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls));
  }
  revertSchur(m_tmp, m_fT, m_U);
  res = m_tmp * res;
}

template<typename MatrixType>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
    Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
    const ComplexMatrix& T,
    const ComplexMatrix& U)
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }

template<typename MatrixType>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
    Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
    const ComplexMatrix& T,
    const ComplexMatrix& U)
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Proxy for the matrix power of some matrix (expression).
 *
 * \tparam Derived  type of the base, a matrix (expression).
 *
 * This class holds the arguments to the matrix power until it is
 * assigned or evaluated for some other reason (so the argument
 * should not be changed in the meantime). It is the return type of
 * MatrixBase::pow() and related functions and most of the
 * time this is the only way it is used.
 */
template<typename Derived>
class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
{
  public:
    typedef typename Derived::PlainObject PlainObject;
    typedef typename Derived::RealScalar RealScalar;
    typedef typename Derived::Index Index;

    /**
     * \brief Constructor.
     *
     * \param[in] A  %Matrix (expression), the base of the matrix power.
     * \param[in] p  real scalar, the exponent of the matrix power.
     */
    MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
    { }

    /**
     * \brief Compute the matrix power.
     *
     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
     * constructor.
     */
    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }

    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    const Derived& m_A;
    const RealScalar m_p;
};

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Proxy for the matrix power of some matrix (expression).
 *
 * \tparam Derived  type of the base, a matrix (expression).
 *
 * This class holds the arguments to the matrix power until it is
 * assigned or evaluated for some other reason (so the argument
 * should not be changed in the meantime). It is the return type of
 * MatrixBase::pow() and related functions and most of the
 * time this is the only way it is used.
 */
template<typename Derived>
class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> >
{
  public:
    typedef typename Derived::PlainObject PlainObject;
    typedef typename std::complex<typename Derived::RealScalar> ComplexScalar;
    typedef typename Derived::Index Index;

    /**
     * \brief Constructor.
     *
     * \param[in] A  %Matrix (expression), the base of the matrix power.
     * \param[in] p  complex scalar, the exponent of the matrix power.
     */
    MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p)
    { }

    /**
     * \brief Compute the matrix power.
     *
     * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$
     * \exp(p \log(A)) \f$.
     *
     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
     * constructor.
     */
    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { res = (m_p * m_A.log()).exp(); }

    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    const Derived& m_A;
    const ComplexScalar m_p;
};

namespace internal {

template<typename MatrixPowerType>
struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> >
{ typedef typename MatrixPowerType::PlainObject ReturnType; };

template<typename Derived>
struct traits< MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };

template<typename Derived>
struct traits< MatrixComplexPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };

}

template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }

template<typename Derived>
const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const
{ return MatrixComplexPowerReturnValue<Derived>(derived(), p); }

} // namespace Eigen

#endif // EIGEN_MATRIX_POWER