aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
blob: f4f5b88a2bdafb3032aa367ca147f0963bd5035d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER

#ifndef M_PI
#define M_PI 3.141592653589793238462643383279503L
#endif

namespace Eigen {

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Class for computing matrix powers.
 *
 * \tparam MatrixType   type of the base, expected to be an instantiation
 * of the Matrix class template.
 * \tparam IsInteger    used internally to select correct specialization.
 * \tparam PlainObject  type of the multiplier.
 */
template <typename MatrixType, int IsInteger, typename PlainObject = MatrixType>
class MatrixPower
{
  private:
    typedef internal::traits<MatrixType> Traits;
    static const int Rows = Traits::RowsAtCompileTime;
    static const int Cols = Traits::ColsAtCompileTime;
    static const int Options = Traits::Options;
    static const int MaxRows = Traits::MaxRowsAtCompileTime;
    static const int MaxCols = Traits::MaxColsAtCompileTime;

    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef std::complex<RealScalar> ComplexScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
    typedef Array<ComplexScalar, Rows, 1, ColMajor, MaxRows> ComplexArray;

  public:
    /**
     * \brief Constructor.
     *
     * \param[in] A  the base of the matrix power.
     * \param[in] p  the exponent of the matrix power.
     * \param[in] b  the multiplier.
     */
    MatrixPower(const MatrixType& A, RealScalar p, const PlainObject& b) :
      m_A(A),
      m_p(p),
      m_b(b),
      m_dimA(A.cols()),
      m_dimb(b.cols())
    { /* empty body */ }

    /**
     * \brief Compute the matrix power.
     *
     * \param[out] result  \f$ A^p b \f$, as specified in the constructor.
     */
    template <typename ResultType> void compute(ResultType& result);
 
  private:
    /**
     * \brief Compute the matrix power.
     *
     * If \p b is \em fatter than \p A, it computes \f$ A^{p_{\textrm int}}
     * \f$ first, and then multiplies it with \p b. Otherwise,
     * #computeChainProduct optimizes the expression.
     *
     * \sa computeChainProduct(ResultType&);
     */
    template <typename ResultType>
    void computeIntPower(ResultType& result);

    /**
     * \brief Convert integral power of the matrix into chain product.
     *
     * This optimizes the matrix expression. It automatically chooses binary
     * powering or matrix chain multiplication or solving the linear system
     * repetitively, according to which algorithm costs less.
     */
    template <typename ResultType>
    void computeChainProduct(ResultType&);

    /** \brief Compute the cost of binary powering. */
    static int computeCost(RealScalar);

    /** \brief Solve the linear system repetitively. */
    template <typename ResultType>
    void partialPivLuSolve(ResultType&, RealScalar);

    /** \brief Compute Schur decomposition of #m_A. */
    void computeSchurDecomposition();

    /**
     * \brief Split #m_p into integral part and fractional part.
     *
     * This method stores the integral part \f$ p_{\textrm int} \f$ into
     * #m_pInt and the fractional part \f$ p_{\textrm frac} \f$ into
     * #m_pFrac, where #m_pFrac is in the interval \f$ (-1,1) \f$. To
     * choose between the possibilities below, it considers the computation
     * of \f$ A^{p_1} \f$ and \f$ A^{p_2} \f$ and determines which of these
     * computations is the better conditioned.
     */
    void getFractionalExponent();

    /** \brief Compute atanh (inverse hyperbolic tangent) for \f$ y / x \f$. */
    static ComplexScalar atanh2(const ComplexScalar& y, const ComplexScalar& x);

    /** \brief Compute power of 2x2 triangular matrix. */
    void compute2x2(RealScalar p);

    /**
     * \brief Compute power of triangular matrices with size > 2. 
     * \details This uses a Schur-Pad&eacute; algorithm.
     */
    void computeBig();

    /** \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
    inline int getPadeDegree(double);

    /** \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
    inline int getPadeDegree(float);
  
    /** \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
    inline int getPadeDegree(long double);

    /** \brief Compute Pad&eacute; approximation to matrix fractional power. */
    void computePade(const int& degree, const ComplexMatrix& IminusT);

    /** \brief Get a certain coefficient of the Pad&eacute; approximation. */
    inline RealScalar coeff(const int& degree);

    /**
     * \brief Store the fractional power into #m_tmp.
     *
     * This intended for complex matrices.
     */
    void computeTmp(ComplexScalar);

    /**
     * \brief Store the fractional power into #m_tmp.
     *
     * This is intended for real matrices. It takes the real part of
     * \f$ U T^{p_{\textrm frac}} U^H \f$.
     *
     * \sa computeTmp(ComplexScalar);
     */
    void computeTmp(RealScalar);

    const MatrixType& m_A;   ///< \brief Reference to the matrix base.
    const RealScalar m_p;    ///< \brief The real exponent.
    const PlainObject& m_b;  ///< \brief Reference to the multiplier.
    const Index m_dimA;      ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
    const Index m_dimb;      ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
    MatrixType m_tmp;        ///< \brief Used for temporary storage.
    RealScalar m_pInt;       ///< \brief Integral part of #m_p.
    RealScalar m_pFrac;      ///< \brief Fractional part of #m_p.
    ComplexMatrix m_T;       ///< \brief Triangular part of Schur decomposition.
    ComplexMatrix m_U;       ///< \brief Unitary part of Schur decomposition.
    ComplexMatrix m_fT;      ///< \brief #m_T to the power of #m_pFrac.
    ComplexArray m_logTdiag; ///< \brief Logarithm of the main diagonal of #m_T.
};

/**
 * \internal \ingroup MatrixFunctions_Module
 * \brief Partial specialization for integral exponents.
 */
template <typename MatrixType, typename PlainObject>
class MatrixPower<MatrixType, 1, PlainObject>
{
  public:
    /**
     * \brief Constructor.
     *
     * \param[in] A  the base of the matrix power.
     * \param[in] p  the exponent of the matrix power.
     * \param[in] b  the multiplier.
     */
    MatrixPower(const MatrixType& A, int p, const PlainObject& b) :
      m_A(A),
      m_p(p),
      m_b(b),
      m_dimA(A.cols()),
      m_dimb(b.cols())
    { /* empty body */ }

    /**
     * \brief Compute the matrix power.
     *
     * If \p b is \em fatter than \p A, it computes \f$ A^p \f$ first, and
     * then multiplies it with \p b. Otherwise, #computeChainProduct
     * optimizes the expression.
     *
     * \param[out] result  \f$ A^p b \f$, as specified in the constructor.
     *
     * \sa computeChainProduct(ResultType&);
     */
    template <typename ResultType>
    void compute(ResultType& result);

  private:
    typedef typename MatrixType::Index Index;

    const MatrixType& m_A;  ///< \brief Reference to the matrix base.
    const int m_p;          ///< \brief The integral exponent.
    const PlainObject& m_b; ///< \brief Reference to the multiplier.
    const Index m_dimA;     ///< \brief The dimension of #m_A, equivalent to %m_A.cols().
    const Index m_dimb;     ///< \brief The dimension of #m_b, equivalent to %m_b.cols().
    MatrixType m_tmp;       ///< \brief Used for temporary storage.

    /**
     * \brief Convert matrix power into chain product.
     *
     * This optimizes the matrix expression. It automatically chooses binary
     * powering or matrix chain multiplication or solving the linear system
     * repetitively, according to which algorithm costs less.
     */
    template <typename ResultType>
    void computeChainProduct(ResultType& result);

    /** \brief Compute the cost of binary powering. */
    static int computeCost(int);

    /** \brief Solve the linear system repetitively. */
    template <typename ResultType>
    void partialPivLuSolve(ResultType&, int);
};

/******* Specialized for real exponents *******/

template <typename MatrixType, int IsInteger, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IsInteger,PlainObject>::compute(ResultType& result)
{
  using std::abs;
  using std::floor;
  using std::pow;

  m_pInt = floor(m_p + RealScalar(0.5));
  m_pFrac = m_p - m_pInt;

  if (!m_pFrac) {
    computeIntPower(result);
  } else if (m_dimA == 1)
    result = pow(m_A(0,0), m_p) * m_b;
  else {
    computeSchurDecomposition();
    getFractionalExponent();
    computeIntPower(result);
    if (m_dimA == 2) {
      compute2x2(m_pFrac);
    } else {
      computeBig();
    }
    computeTmp(Scalar());
    result = m_tmp * result;
  }
}

template <typename MatrixType, int IsInteger, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computeIntPower(ResultType& result)
{
  MatrixType tmp;
  if (m_dimb > m_dimA) {
    tmp = MatrixType::Identity(m_dimA, m_dimA);
    computeChainProduct(tmp);
    result = tmp * m_b;
  } else {
    result = m_b;
    computeChainProduct(result);
  }
}

template <typename MatrixType, int IsInteger, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computeChainProduct(ResultType& result)
{
  using std::abs;
  using std::fmod;
  using std::frexp;
  using std::ldexp;

  RealScalar p = abs(m_pInt);
  int cost = computeCost(p);

  if (m_pInt < RealScalar(0)) {
    if (p * m_dimb <= cost * m_dimA) {
      partialPivLuSolve(result, p);
      return;
    } else {
      m_tmp = m_A.inverse();
    }
  } else {
    m_tmp = m_A;
  }
  while (p * m_dimb > cost * m_dimA) {
    if (fmod(p, RealScalar(2)) >= RealScalar(1)) {
      result = m_tmp * result;
      cost--;
    }
    m_tmp *= m_tmp;
    cost--;
    p = ldexp(p, -1);
  }
  for (; p >= RealScalar(1); p--)
    result = m_tmp * result;
}

template <typename MatrixType, int IsInteger, typename PlainObject>
int MatrixPower<MatrixType,IsInteger,PlainObject>::computeCost(RealScalar p)
{
  using std::frexp;
  using std::ldexp;
  int cost, tmp;

  frexp(p, &cost);
  while (frexp(p, &tmp), tmp > 0) {
    p -= ldexp(RealScalar(0.5), tmp);
    cost++;
  }
  return cost;
}

template <typename MatrixType, int IsInteger, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,IsInteger,PlainObject>::partialPivLuSolve(ResultType& result, RealScalar p)
{
  const PartialPivLU<MatrixType> Asolver(m_A);
  for (; p >= RealScalar(1); p--)
    result = Asolver.solve(result);
}

template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computeSchurDecomposition()
{
  const ComplexSchur<MatrixType> schurOfA(m_A);
  m_T = schurOfA.matrixT();
  m_U = schurOfA.matrixU();
}

template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::getFractionalExponent()
{
  using std::pow;
  typedef Array<RealScalar, Rows, 1, ColMajor, MaxRows> RealArray;

  const ComplexArray Tdiag = m_T.diagonal();
  const RealArray absTdiag = Tdiag.abs();
  const RealScalar maxAbsEival = absTdiag.maxCoeff();
  const RealScalar minAbsEival = absTdiag.minCoeff();

  m_logTdiag = Tdiag.log();
  if (m_pFrac > RealScalar(0.5) &&  // This is just a shortcut.
      m_pFrac > (RealScalar(1) - m_pFrac) * pow(maxAbsEival/minAbsEival, m_pFrac)) {
    m_pFrac--;
    m_pInt++;
  }
}

template <typename MatrixType, int IsInteger, typename PlainObject>
std::complex<typename MatrixType::RealScalar>
MatrixPower<MatrixType,IsInteger,PlainObject>::atanh2(const ComplexScalar& y, const ComplexScalar& x)
{
  using std::abs;
  using std::log;
  using std::sqrt;
  const ComplexScalar z = y / x;

  if (abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
    return RealScalar(0.5) * log((x + y) / (x - y));
  else
    return z + z*z*z / RealScalar(3);
}

template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::compute2x2(RealScalar p)
{
  using std::abs;
  using std::ceil;
  using std::exp;
  using std::imag;
  using std::ldexp;
  using std::log;
  using std::pow;
  using std::sinh;

  int i, j, unwindingNumber;
  ComplexScalar w;

  m_fT(0,0) = pow(m_T(0,0), p);
  for (j = 1; j < m_dimA; j++) {
    i = j - 1;
    m_fT(j,j) = pow(m_T(j,j), p);

    if (m_T(i,i) == m_T(j,j))
      m_fT(i,j) = p * pow(m_T(i,j), p - RealScalar(1));
    else if (abs(m_T(i,i)) < ldexp(abs(m_T(j,j)), -1) || abs(m_T(j,j)) < ldexp(abs(m_T(i,i)), -1))
      m_fT(i,j) = m_T(i,j) * (m_fT(j,j) - m_fT(i,i)) / (m_T(j,j) - m_T(i,i));
    else {
      // computation in previous branch is inaccurate if abs(m_T(j,j)) \approx abs(m_T(i,i))
      unwindingNumber = static_cast<int>(ceil((imag(m_logTdiag[j] - m_logTdiag[i]) - M_PI) / (2 * M_PI)));
      w = atanh2(m_T(j,j) - m_T(i,i), m_T(j,j) + m_T(i,i)) + ComplexScalar(0, M_PI * unwindingNumber);
      m_fT(i,j) = m_T(i,j) * RealScalar(2) * exp(RealScalar(0.5) * p * (m_logTdiag[j] + m_logTdiag[i])) *
	  sinh(p * w) / (m_T(j,j) - m_T(i,i));
    }
  }
}

template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computeBig()
{
  using std::ldexp;
  const int digits = std::numeric_limits<RealScalar>::digits;
  const RealScalar maxNormForPade = digits <=  24? 4.3268868e-1f:                           // sigle precision
                                    digits <=  53? 2.787629930861592e-1:                    // double precision
				    digits <=  64? 2.4461702976649554343e-1L:               // extended precision
				    digits <= 106? 1.1015697751808768849251777304538e-01:   // double-double
				                   9.133823549851655878933476070874651e-02; // quadruple precision
  int degree, degree2, numberOfSquareRoots = 0, numberOfExtraSquareRoots = 0;
  ComplexMatrix IminusT, sqrtT, T = m_T;
  RealScalar normIminusT;

  while (true) {
    IminusT = ComplexMatrix::Identity(m_dimA, m_dimA) - T;
    normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
    if (normIminusT < maxNormForPade) {
      degree = getPadeDegree(normIminusT);
      degree2 = getPadeDegree(normIminusT * RealScalar(0.5));
      if (degree - degree2 <= 1 || numberOfExtraSquareRoots)
	break;
      numberOfExtraSquareRoots++;
    }
    MatrixSquareRootTriangular<ComplexMatrix>(T).compute(sqrtT);
    T = sqrtT;
    numberOfSquareRoots++;
  }
  computePade(degree, IminusT);

  for (; numberOfSquareRoots; numberOfSquareRoots--) {
    compute2x2(ldexp(m_pFrac, -numberOfSquareRoots));
    m_fT *= m_fT;
  }
  compute2x2(m_pFrac);
}

template <typename MatrixType, int IsInteger, typename PlainObject>
inline int MatrixPower<MatrixType,IsInteger,PlainObject>::getPadeDegree(float normIminusT)
{
  const float maxNormForPade[] = { 2.7996156e-1f /* degree = 3 */ , 4.3268868e-1f };
  int degree = 3;
  for (; degree <= 4; degree++)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template <typename MatrixType, int IsInteger, typename PlainObject>
inline int MatrixPower<MatrixType,IsInteger,PlainObject>::getPadeDegree(double normIminusT)
{
  const double maxNormForPade[] = { 1.882832775783710e-2 /* degree = 3 */ , 6.036100693089536e-2,
      1.239372725584857e-1, 1.998030690604104e-1, 2.787629930861592e-1 };
  int degree = 3;
  for (; degree <= 7; degree++)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template <typename MatrixType, int IsInteger, typename PlainObject>
inline int MatrixPower<MatrixType,IsInteger,PlainObject>::getPadeDegree(long double normIminusT)
{
#if LDBL_MANT_DIG == 53
  const int maxPadeDegree = 7;
  const double maxNormForPade[] = { 1.882832775783710e-2L /* degree = 3 */ , 6.036100693089536e-2L,
      1.239372725584857e-1L, 1.998030690604104e-1L, 2.787629930861592e-1L };

#elif LDBL_MANT_DIG <= 64
  const int maxPadeDegree = 8;
  const double maxNormForPade[] = { 6.3813036421433454225e-3L /* degree = 3 */ , 2.6385399995942000637e-2L,
      6.4197808148473250951e-2L, 1.1697754827125334716e-1L, 1.7898159424022851851e-1L, 2.4461702976649554343e-1L };

#elif LDBL_MANT_DIG <= 106
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 1.0007009771231429252734273435258e-4L /* degree = 3 */ ,
      1.0538187257176867284131299608423e-3L, 4.7061962004060435430088460028236e-3L, 1.3218912040677196137566177023204e-2L,
      2.8060971416164795541562544777056e-2L, 4.9621804942978599802645569010027e-2L, 7.7360065339071543892274529471454e-2L,
      1.1015697751808768849251777304538e-1L };
#else
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 5.524459874082058900800655900644241e-5L /* degree = 3 */ ,
      6.640087564637450267909344775414015e-4L, 3.227189204209204834777703035324315e-3L,
      9.618565213833446441025286267608306e-3L, 2.134419664210632655600344879830298e-2L,
      3.907876732697568523164749432441966e-2L, 6.266303975524852476985111609267074e-2L,
      9.133823549851655878933476070874651e-2L };
#endif
  int degree = 3;
  for (; degree <= maxPadeDegree; degree++)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}
template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computePade(const int& degree, const ComplexMatrix& IminusT)
{
  int i = degree << 1;
  m_fT = coeff(i) * IminusT;
  for (i--; i; i--) {
    m_fT = (ComplexMatrix::Identity(m_dimA, m_dimA) + m_fT).template triangularView<Upper>()
	.solve(coeff(i) * IminusT).eval();
  }
  m_fT += ComplexMatrix::Identity(m_dimA, m_dimA);
}

template <typename MatrixType, int IsInteger, typename PlainObject>
inline typename MatrixType::RealScalar MatrixPower<MatrixType,IsInteger,PlainObject>::coeff(const int& i)
{
  if (i == 1)
    return -m_pFrac;
  else if (i & 1)
    return (-m_pFrac - RealScalar(i >> 1)) / RealScalar(i << 1);
  else
    return (m_pFrac - RealScalar(i >> 1)) / RealScalar((i - 1) << 1);
}

template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computeTmp(RealScalar)
{ m_tmp = (m_U * m_fT * m_U.adjoint()).real(); }

template <typename MatrixType, int IsInteger, typename PlainObject>
void MatrixPower<MatrixType,IsInteger,PlainObject>::computeTmp(ComplexScalar)
{ m_tmp = m_U * m_fT * m_U.adjoint(); }

/******* Specialized for integral exponents *******/

template <typename MatrixType, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,1,PlainObject>::compute(ResultType& result)
{
  MatrixType tmp;
  if (m_dimb > m_dimA) {
    tmp = MatrixType::Identity(m_dimA, m_dimA);
    computeChainProduct(tmp);
    result = tmp * m_b;
  } else {
    result = m_b;
    computeChainProduct(result);
  }
}

template <typename MatrixType, typename PlainObject>
int MatrixPower<MatrixType,1,PlainObject>::computeCost(int p)
{
  int cost = 0, tmp;
  for (tmp = p; tmp; tmp >>= 1)
    cost++;
  for (tmp = 1; tmp <= p; tmp <<= 1)
    if (tmp & p) cost++;
  return cost;
}

template <typename MatrixType, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,1,PlainObject>::partialPivLuSolve(ResultType& result, int p)
{
  const PartialPivLU<MatrixType> Asolver(m_A);
  for(; p; p--)
    result = Asolver.solve(result);
}

template <typename MatrixType, typename PlainObject>
template <typename ResultType>
void MatrixPower<MatrixType,1,PlainObject>::computeChainProduct(ResultType& result)
{
  using std::abs;
  int p = abs(m_p), cost = computeCost(p);

  if (m_p < 0) {
    if (p * m_dimb <= cost * m_dimA) {
      partialPivLuSolve(result, p);
      return;
    } else {
      m_tmp = m_A.inverse();
    }
  } else {
    m_tmp = m_A;
  }
 
  while (p * m_dimb > cost * m_dimA) {
    if (p & 1) {
      result = m_tmp * result;
      cost--;
    }
    m_tmp *= m_tmp;
    cost--;
    p >>= 1;
  }

  for (; p; p--)
    result = m_tmp * result;
}

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Proxy for the matrix power multiplied by another matrix
 * (expression).
 *
 * \tparam MatrixType    type of the base, a matrix (expression).
 * \tparam ExponentType  type of the exponent, a scalar.
 * \tparam Derived       type of the multiplier, a matrix (expression).
 *
 * This class holds the arguments to the matrix expression until it is
 * assigned or evaluated for some other reason (so the argument
 * should not be changed in the meantime). It is the return type of
 * MatrixPowerReturnValue::operator*() and most of the time this is the
 * only way it is used.
 */
template<typename MatrixType, typename ExponentType, typename Derived> class MatrixPowerMultiplied
: public ReturnByValue<MatrixPowerMultiplied<MatrixType, ExponentType, Derived> >
{
  public:
    typedef typename Derived::Index Index;

    /**
     * \brief Constructor.
     *
     * \param[in] A  %Matrix (expression), the base of the matrix power.
     * \param[in] p  scalar, the exponent of the matrix power.
     * \param[in] b  %Matrix (expression), the multiplier.
     */
    MatrixPowerMultiplied(const MatrixType& A, const ExponentType& p, const Derived& b)
    : m_A(A), m_p(p), m_b(b) { }

    /**
     * \brief Compute the matrix exponential.
     *
     * \param[out] result  \f$ A^p b \f$ where \p A ,\p p and \p b are as in
     * the constructor.
     */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      typedef typename Derived::PlainObject PlainObject;
      const int IsInteger = NumTraits<ExponentType>::IsInteger;
      const typename MatrixType::PlainObject Aevaluated = m_A.eval();
      const PlainObject bevaluated = m_b.eval();
      MatrixPower<MatrixType, IsInteger, PlainObject> mp(Aevaluated, m_p, bevaluated);
      mp.compute(result);
    }

    Index rows() const { return m_b.rows(); }
    Index cols() const { return m_b.cols(); }

  private:
    const MatrixType& m_A;
    const ExponentType& m_p;
    const Derived& m_b;

    MatrixPowerMultiplied& operator=(const MatrixPowerMultiplied&);
};

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Proxy for the matrix power of some matrix (expression).
 *
 * \tparam Derived       type of the base, a matrix (expression).
 * \tparam ExponentType  type of the exponent, a scalar.
 *
 * This class holds the arguments to the matrix power until it is
 * assigned or evaluated for some other reason (so the argument
 * should not be changed in the meantime). It is the return type of
 * MatrixBase::pow() and related functions and most of the
 * time this is the only way it is used.
 */
template<typename Derived, typename ExponentType> class MatrixPowerReturnValue
: public ReturnByValue<MatrixPowerReturnValue<Derived, ExponentType> >
{
  public:
    typedef typename Derived::Index Index;

    /**
     * \brief Constructor.
     *
     * \param[in] A  %Matrix (expression), the base of the matrix power.
     * \param[in] p  scalar, the exponent of the matrix power.
     */
    MatrixPowerReturnValue(const Derived& A, const ExponentType& p)
    : m_A(A), m_p(p) { }

    /**
     * \brief Return the matrix power multiplied by %Matrix \p b.
     *
     * The %MatrixPower class can optimize \f$ A^p b \f$ computing, and this
     * method provides an elegant way to call it:
     *
     * \param[in] b  %Matrix (expression), the multiplier.
     */
    template <typename OtherDerived>
    const MatrixPowerMultiplied<Derived, ExponentType, OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
    { return MatrixPowerMultiplied<Derived, ExponentType, OtherDerived>(m_A, m_p, b.derived()); }

    /**
     * \brief Compute the matrix power.
     *
     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
     * constructor.
     */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      typedef typename Derived::PlainObject PlainObject;
      const int IsInteger = NumTraits<ExponentType>::IsInteger;
      const PlainObject Aevaluated = m_A.eval();
      const PlainObject Identity = PlainObject::Identity(m_A.rows(), m_A.cols());
      MatrixPower<PlainObject, IsInteger> mp(Aevaluated, m_p, Identity);
      mp.compute(result);
    }

    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    const Derived& m_A;
    const ExponentType& m_p;

    MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};

namespace internal {
  template<typename MatrixType, typename ExponentType, typename Derived>
  struct traits<MatrixPowerMultiplied<MatrixType, ExponentType, Derived> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };

  template<typename Derived, typename ExponentType>
  struct traits<MatrixPowerReturnValue<Derived, ExponentType> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };
}

template <typename Derived>
template <typename ExponentType>
const MatrixPowerReturnValue<Derived, ExponentType> MatrixBase<Derived>::pow(const ExponentType& p) const
{
  eigen_assert(rows() == cols());
  return MatrixPowerReturnValue<Derived, ExponentType>(derived(), p);
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_POWER