aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
blob: e83e055e9b607bb068cbe4047cd0f70dba91d22b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_MATRIX_FUNCTION
#define EIGEN_MATRIX_FUNCTION

#include "StemFunction.h"
#include "MatrixFunctionAtomic.h"


/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix exponentials.
  * \tparam MatrixType type of the argument of the matrix function,
  * expected to be an instantiation of the Matrix class template.
  */
template <typename MatrixType, int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex>
class MatrixFunction
{  
  private:

    typedef typename ei_traits<MatrixType>::Index Index;
    typedef typename ei_traits<MatrixType>::Scalar Scalar;    
    typedef typename ei_stem_function<Scalar>::type StemFunction;

  public:

    /** \brief Constructor. 
      *
      * \param[in]  A      argument of matrix function, should be a square matrix.
      * \param[in]  f      an entire function; \c f(x,n) should compute the n-th derivative of f at x.
      *
      * The class stores a reference to \p A, so it should not be
      * changed (or destroyed) before compute() is called.
      */
    MatrixFunction(const MatrixType& A, StemFunction f);

    /** \brief Compute the matrix function.
      *
      * \param[out] result  the function \p f applied to \p A, as
      * specified in the constructor.
      *
      * See MatrixBase::matrixFunction() for details on how this computation
      * is implemented.
      */
    template <typename ResultType> 
    void compute(ResultType &result);    
};


/** \ingroup MatrixFunctions_Module 
  * \brief Partial specialization of MatrixFunction for real matrices \internal 
  */
template <typename MatrixType>
class MatrixFunction<MatrixType, 0>
{  
  private:

    typedef ei_traits<MatrixType> Traits;
    typedef typename Traits::Scalar Scalar;
    static const int Rows = Traits::RowsAtCompileTime;
    static const int Cols = Traits::ColsAtCompileTime;
    static const int Options = MatrixType::Options;
    static const int MaxRows = Traits::MaxRowsAtCompileTime;
    static const int MaxCols = Traits::MaxColsAtCompileTime;

    typedef std::complex<Scalar> ComplexScalar;
    typedef Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols> ComplexMatrix;
    typedef typename ei_stem_function<Scalar>::type StemFunction;

  public:

    /** \brief Constructor. 
      *
      * \param[in]  A      argument of matrix function, should be a square matrix.
      * \param[in]  f      an entire function; \c f(x,n) should compute the n-th derivative of f at x.
      */
    MatrixFunction(const MatrixType& A, StemFunction f) : m_A(A), m_f(f) { }

    /** \brief Compute the matrix function.
      *
      * \param[out] result  the function \p f applied to \p A, as
      * specified in the constructor.
      *
      * This function converts the real matrix \c A to a complex matrix,
      * uses MatrixFunction<MatrixType,1> and then converts the result back to
      * a real matrix.
      */
    template <typename ResultType>
    void compute(ResultType& result) 
    {
      ComplexMatrix CA = m_A.template cast<ComplexScalar>();
      ComplexMatrix Cresult;
      MatrixFunction<ComplexMatrix> mf(CA, m_f);
      mf.compute(Cresult);
      result = Cresult.real();
    }

  private:
    typename ei_nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
    StemFunction *m_f; /**< \brief Stem function for matrix function under consideration */    

    MatrixFunction& operator=(const MatrixFunction&);
};

      
/** \ingroup MatrixFunctions_Module 
  * \brief Partial specialization of MatrixFunction for complex matrices \internal 
  */
template <typename MatrixType>
class MatrixFunction<MatrixType, 1>
{
  private:

    typedef ei_traits<MatrixType> Traits;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
    static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
    static const int Options = MatrixType::Options;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename ei_stem_function<Scalar>::type StemFunction;
    typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
    typedef Matrix<Index, Traits::RowsAtCompileTime, 1> IntVectorType;
    typedef Matrix<Index, Dynamic, 1> DynamicIntVectorType;
    typedef std::list<Scalar> Cluster;
    typedef std::list<Cluster> ListOfClusters;
    typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;

  public:

    MatrixFunction(const MatrixType& A, StemFunction f);
    template <typename ResultType> void compute(ResultType& result);

  private:

    void computeSchurDecomposition();
    void partitionEigenvalues();
    typename ListOfClusters::iterator findCluster(Scalar key);
    void computeClusterSize();
    void computeBlockStart();
    void constructPermutation();
    void permuteSchur();
    void swapEntriesInSchur(Index index);
    void computeBlockAtomic();
    Block<MatrixType> block(const MatrixType& A, Index i, Index j);
    void computeOffDiagonal();
    DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);

    typename ei_nested<MatrixType>::type m_A; /**< \brief Reference to argument of matrix function. */
    StemFunction *m_f; /**< \brief Stem function for matrix function under consideration */
    MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
    MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
    MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
    ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
    DynamicIntVectorType m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
    DynamicIntVectorType m_clusterSize; /**< \brief Number of eigenvalues in each clusters  */
    DynamicIntVectorType m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
    IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */

    /** \brief Maximum distance allowed between eigenvalues to be considered "close".
      *
      * This is morally a \c static \c const \c Scalar, but only
      * integers can be static constant class members in C++. The
      * separation constant is set to 0.1, a value taken from the
      * paper by Davies and Higham. */
    static const RealScalar separation() { return static_cast<RealScalar>(0.1); }

    MatrixFunction& operator=(const MatrixFunction&);
};

/** \brief Constructor. 
 *
 * \param[in]  A      argument of matrix function, should be a square matrix.
 * \param[in]  f      an entire function; \c f(x,n) should compute the n-th derivative of f at x.
 */
template <typename MatrixType>
MatrixFunction<MatrixType,1>::MatrixFunction(const MatrixType& A, StemFunction f) :
  m_A(A), m_f(f)
{
  /* empty body */
}

/** \brief Compute the matrix function.
  *
  * \param[out] result  the function \p f applied to \p A, as
  * specified in the constructor.
  */
template <typename MatrixType>
template <typename ResultType>
void MatrixFunction<MatrixType,1>::compute(ResultType& result) 
{
  computeSchurDecomposition();
  partitionEigenvalues();
  computeClusterSize();
  computeBlockStart();
  constructPermutation();
  permuteSchur();
  computeBlockAtomic();
  computeOffDiagonal();
  result = m_U * m_fT * m_U.adjoint();
}

/** \brief Store the Schur decomposition of #m_A in #m_T and #m_U */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::computeSchurDecomposition()
{
  const ComplexSchur<MatrixType> schurOfA(m_A);  
  m_T = schurOfA.matrixT();
  m_U = schurOfA.matrixU();
}

/** \brief Partition eigenvalues in clusters of ei'vals close to each other
  * 
  * This function computes #m_clusters. This is a partition of the
  * eigenvalues of #m_T in clusters, such that
  * # Any eigenvalue in a certain cluster is at most separation() away
  *   from another eigenvalue in the same cluster.
  * # The distance between two eigenvalues in different clusters is
  *   more than separation().
  * The implementation follows Algorithm 4.1 in the paper of Davies
  * and Higham. 
  */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::partitionEigenvalues()
{
  const Index rows = m_T.rows();
  VectorType diag = m_T.diagonal(); // contains eigenvalues of A

  for (Index i=0; i<rows; ++i) {
    // Find set containing diag(i), adding a new set if necessary
    typename ListOfClusters::iterator qi = findCluster(diag(i));
    if (qi == m_clusters.end()) {
      Cluster l;
      l.push_back(diag(i));
      m_clusters.push_back(l);
      qi = m_clusters.end();
      --qi;
    }

    // Look for other element to add to the set
    for (Index j=i+1; j<rows; ++j) {
      if (ei_abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
	typename ListOfClusters::iterator qj = findCluster(diag(j));
	if (qj == m_clusters.end()) {
	  qi->push_back(diag(j));
	} else {
	  qi->insert(qi->end(), qj->begin(), qj->end());
	  m_clusters.erase(qj);
	}
      }
    }
  }
}

/** \brief Find cluster in #m_clusters containing some value 
  * \param[in] key Value to find
  * \returns Iterator to cluster containing \c key, or
  * \c m_clusters.end() if no cluster in m_clusters contains \c key.
  */
template <typename MatrixType>
typename MatrixFunction<MatrixType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,1>::findCluster(Scalar key)
{
  typename Cluster::iterator j;
  for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
    j = std::find(i->begin(), i->end(), key);
    if (j != i->end())
      return i;
  }
  return m_clusters.end();
}

/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::computeClusterSize()
{
  const Index rows = m_T.rows();
  VectorType diag = m_T.diagonal(); 
  const Index numClusters = static_cast<Index>(m_clusters.size());

  m_clusterSize.setZero(numClusters);
  m_eivalToCluster.resize(rows);
  Index clusterIndex = 0;
  for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
    for (Index i = 0; i < diag.rows(); ++i) {
      if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
        ++m_clusterSize[clusterIndex];
        m_eivalToCluster[i] = clusterIndex;
      }
    }
    ++clusterIndex;
  }
}

/** \brief Compute #m_blockStart using #m_clusterSize */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::computeBlockStart()
{
  m_blockStart.resize(m_clusterSize.rows());
  m_blockStart(0) = 0;
  for (Index i = 1; i < m_clusterSize.rows(); i++) {
    m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
  }
}

/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::constructPermutation()
{
  DynamicIntVectorType indexNextEntry = m_blockStart;
  m_permutation.resize(m_T.rows());
  for (Index i = 0; i < m_T.rows(); i++) {
    Index cluster = m_eivalToCluster[i];
    m_permutation[i] = indexNextEntry[cluster];
    ++indexNextEntry[cluster];
  }
}  

/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::permuteSchur()
{
  IntVectorType p = m_permutation;
  for (Index i = 0; i < p.rows() - 1; i++) {
    Index j;
    for (j = i; j < p.rows(); j++) {
      if (p(j) == i) break;
    }
    ei_assert(p(j) == i);
    for (Index k = j-1; k >= i; k--) {
      swapEntriesInSchur(k);
      std::swap(p.coeffRef(k), p.coeffRef(k+1));
    }
  }
}

/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::swapEntriesInSchur(Index index)
{
  JacobiRotation<Scalar> rotation;
  rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
  m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
  m_T.applyOnTheRight(index, index+1, rotation);
  m_U.applyOnTheRight(index, index+1, rotation);
}  

/** \brief Compute block diagonal part of #m_fT.
  *
  * This routine computes the matrix function #m_f applied to the block
  * diagonal part of #m_T, with the blocking given by #m_blockStart. The
  * result is stored in #m_fT. The off-diagonal parts of #m_fT are set
  * to zero.
  */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::computeBlockAtomic()
{ 
  m_fT.resize(m_T.rows(), m_T.cols());
  m_fT.setZero();
  MatrixFunctionAtomic<DynMatrixType> mfa(m_f);
  for (Index i = 0; i < m_clusterSize.rows(); ++i) {
    block(m_fT, i, i) = mfa.compute(block(m_T, i, i));
  }
}

/** \brief Return block of matrix according to blocking given by #m_blockStart */
template <typename MatrixType>
Block<MatrixType> MatrixFunction<MatrixType,1>::block(const MatrixType& A, Index i, Index j)
{
  return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
}

/** \brief Compute part of #m_fT above block diagonal.
  *
  * This routine assumes that the block diagonal part of #m_fT (which
  * equals #m_f applied to #m_T) has already been computed and computes
  * the part above the block diagonal. The part below the diagonal is
  * zero, because #m_T is upper triangular.
  */
template <typename MatrixType>
void MatrixFunction<MatrixType,1>::computeOffDiagonal()
{ 
  for (Index diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
    for (Index blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
      // compute (blockIndex, blockIndex+diagIndex) block
      DynMatrixType A = block(m_T, blockIndex, blockIndex);
      DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
      DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
      C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
      for (Index k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
	C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
	C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
      }
      block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
    }
  }
}

/** \brief Solve a triangular Sylvester equation AX + XB = C 
  *
  * \param[in]  A  the matrix A; should be square and upper triangular
  * \param[in]  B  the matrix B; should be square and upper triangular
  * \param[in]  C  the matrix C; should have correct size.
  *
  * \returns the solution X.
  *
  * If A is m-by-m and B is n-by-n, then both C and X are m-by-n. 
  * The (i,j)-th component of the Sylvester equation is
  * \f[ 
  *     \sum_{k=i}^m A_{ik} X_{kj} + \sum_{k=1}^j X_{ik} B_{kj} = C_{ij}. 
  * \f]
  * This can be re-arranged to yield:
  * \f[ 
  *     X_{ij} = \frac{1}{A_{ii} + B_{jj}} \Bigl( C_{ij}
  *     - \sum_{k=i+1}^m A_{ik} X_{kj} - \sum_{k=1}^{j-1} X_{ik} B_{kj} \Bigr).
  * \f]
  * It is assumed that A and B are such that the numerator is never
  * zero (otherwise the Sylvester equation does not have a unique
  * solution). In that case, these equations can be evaluated in the
  * order \f$ i=m,\ldots,1 \f$ and \f$ j=1,\ldots,n \f$.
  */
template <typename MatrixType>
typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1>::solveTriangularSylvester(
  const DynMatrixType& A, 
  const DynMatrixType& B, 
  const DynMatrixType& C)
{
  ei_assert(A.rows() == A.cols());
  ei_assert(A.isUpperTriangular());
  ei_assert(B.rows() == B.cols());
  ei_assert(B.isUpperTriangular());
  ei_assert(C.rows() == A.rows());
  ei_assert(C.cols() == B.rows());

  Index m = A.rows();
  Index n = B.rows();
  DynMatrixType X(m, n);

  for (Index i = m - 1; i >= 0; --i) {
    for (Index j = 0; j < n; ++j) {

      // Compute AX = \sum_{k=i+1}^m A_{ik} X_{kj}
      Scalar AX;
      if (i == m - 1) {
	AX = 0; 
      } else {
	Matrix<Scalar,1,1> AXmatrix = A.row(i).tail(m-1-i) * X.col(j).tail(m-1-i);
	AX = AXmatrix(0,0);
      }

      // Compute XB = \sum_{k=1}^{j-1} X_{ik} B_{kj}
      Scalar XB;
      if (j == 0) {
	XB = 0; 
      } else {
	Matrix<Scalar,1,1> XBmatrix = X.row(i).head(j) * B.col(j).head(j);
	XB = XBmatrix(0,0);
      }

      X(i,j) = (C(i,j) - AX - XB) / (A(i,i) + B(j,j));
    }
  }
  return X;
}

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix function of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix function.
  *
  * This class holds the argument to the matrix function until it is
  * assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * matrixBase::matrixFunction() and related functions and most of the
  * time this is the only way it is used.
  */
template<typename Derived> class MatrixFunctionReturnValue
: public ReturnByValue<MatrixFunctionReturnValue<Derived> >
{
  public:

    typedef typename Derived::Scalar Scalar;
    typedef typename Derived::Index Index;
    typedef typename ei_stem_function<Scalar>::type StemFunction;

   /** \brief Constructor.
      *
      * \param[in] A  %Matrix (expression) forming the argument of the
      * matrix function.
      * \param[in] f  Stem function for matrix function under consideration.
      */
    MatrixFunctionReturnValue(const Derived& A, StemFunction f) : m_A(A), m_f(f) { }

    /** \brief Compute the matrix function.
      *
      * \param[out] result \p f applied to \p A, where \p f and \p A
      * are as in the constructor.
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      const typename Derived::PlainObject Aevaluated = m_A.eval();
      MatrixFunction<typename Derived::PlainObject> mf(Aevaluated, m_f);
      mf.compute(result);
    }

    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    typename ei_nested<Derived>::type m_A;
    StemFunction *m_f;

    MatrixFunctionReturnValue& operator=(const MatrixFunctionReturnValue&);
};

template<typename Derived>
struct ei_traits<MatrixFunctionReturnValue<Derived> >
{
  typedef typename Derived::PlainObject ReturnType;
};


/********** MatrixBase methods **********/


template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f) const
{
  ei_assert(rows() == cols());
  return MatrixFunctionReturnValue<Derived>(derived(), f);
}

template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
{
  ei_assert(rows() == cols());
  typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
  return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sin);
}

template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
{
  ei_assert(rows() == cols());
  typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
  return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cos);
}

template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
{
  ei_assert(rows() == cols());
  typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
  return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::sinh);
}

template <typename Derived>
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
{
  ei_assert(rows() == cols());
  typedef typename ei_stem_function<Scalar>::ComplexScalar ComplexScalar;
  return MatrixFunctionReturnValue<Derived>(derived(), StdStemFunctions<ComplexScalar>::cosh);
}

#endif // EIGEN_MATRIX_FUNCTION