aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
blob: bc1bcceb2bc599d75fdfa45a019d7baec89c916e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL

#ifdef _MSC_VER
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
#endif

/** Compute the matrix exponential. 
 *
 * \param M      matrix whose exponential is to be computed.
 * \param result pointer to the matrix in which to store the result.
 *
 * The matrix exponential of \f$ M \f$ is defined by
 * \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
 * The matrix exponential can be used to solve linear ordinary
 * differential equations: the solution of \f$ y' = My \f$ with the
 * initial condition \f$ y(0) = y_0 \f$ is given by 
 * \f$ y(t) = \exp(M) y_0 \f$.
 *
 * The cost of the computation is approximately \f$ 20 n^3 \f$ for
 * matrices of size \f$ n \f$. The number 20 depends weakly on the
 * norm of the matrix.
 *
 * The matrix exponential is computed using the scaling-and-squaring
 * method combined with Pad&eacute; approximation. The matrix is first
 * rescaled, then the exponential of the reduced matrix is computed
 * approximant, and then the rescaling is undone by repeated
 * squaring. The degree of the Pad&eacute; approximant is chosen such
 * that the approximation error is less than the round-off
 * error. However, errors may accumulate during the squaring phase.
 * 
 * Details of the algorithm can be found in: Nicholas J. Higham, "The
 * scaling and squaring method for the matrix exponential revisited,"
 * <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
 * 2005. 
 *
 * \note Currently, \p M has to be a matrix of \c double .
 */
template <typename Derived>
void ei_matrix_exponential(const MatrixBase<Derived> &M, typename ei_plain_matrix_type<Derived>::type* result)
{
  typedef typename ei_traits<Derived>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename ei_plain_matrix_type<Derived>::type PlainMatrixType;

  ei_assert(M.rows() == M.cols());
  EIGEN_STATIC_ASSERT(NumTraits<Scalar>::HasFloatingPoint,NUMERIC_TYPE_MUST_BE_FLOATING_POINT)

  PlainMatrixType num, den, U, V;
  PlainMatrixType Id = PlainMatrixType::Identity(M.rows(), M.cols());
  RealScalar l1norm = M.cwise().abs().colwise().sum().maxCoeff();
  int squarings = 0;
  
  // Choose degree of Pade approximant, depending on norm of M
  if (l1norm < 1.495585217958292e-002) {
    
    // Use (3,3)-Pade
    const Scalar b[] = {120., 60., 12., 1.};
    PlainMatrixType M2;
    M2 = (M * M).lazy();
    num = b[3]*M2 + b[1]*Id;
    U = (M * num).lazy();
    V = b[2]*M2 + b[0]*Id;

  } else if (l1norm < 2.539398330063230e-001) {

    // Use (5,5)-Pade
    const Scalar b[] = {30240., 15120., 3360., 420., 30., 1.};
    PlainMatrixType M2, M4;
    M2 = (M * M).lazy();
    M4 = (M2 * M2).lazy();
    num = b[5]*M4 + b[3]*M2 + b[1]*Id;
    U = (M * num).lazy();
    V = b[4]*M4 + b[2]*M2 + b[0]*Id;

  } else if (l1norm < 9.504178996162932e-001) {

    // Use (7,7)-Pade
    const Scalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
    PlainMatrixType M2, M4, M6;
    M2 = (M * M).lazy();
    M4 = (M2 * M2).lazy();
    M6 = (M4 * M2).lazy();
    num = b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
    U = (M * num).lazy();
    V = b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;

  } else if (l1norm < 2.097847961257068e+000) {

    // Use (9,9)-Pade
    const Scalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
                         2162160., 110880., 3960., 90., 1.};
    PlainMatrixType M2, M4, M6, M8;
    M2 = (M * M).lazy();
    M4 = (M2 * M2).lazy();
    M6 = (M4 * M2).lazy();
    M8 = (M6 * M2).lazy();
    num = b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2 + b[1]*Id;
    U = (M * num).lazy();
    V = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2 + b[0]*Id;

  } else {

    // Use (13,13)-Pade; scale matrix by power of 2 so that its norm
    // is small enough 

    const Scalar maxnorm = 5.371920351148152;
    const Scalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., 
			1187353796428800., 129060195264000., 10559470521600., 670442572800., 
			33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
    
    squarings = std::max(0, (int)ceil(log2(l1norm / maxnorm)));
    PlainMatrixType A, A2, A4, A6;
    A = M / pow(Scalar(2), squarings);
    A2 = (A * A).lazy();
    A4 = (A2 * A2).lazy();
    A6 = (A4 * A2).lazy();
    num = b[13]*A6 + b[11]*A4 + b[9]*A2;
    V = (A6 * num).lazy();
    num = V + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*Id;
    U = (A * num).lazy();
    num = b[12]*A6 + b[10]*A4 + b[8]*A2;
    V = (A6 * num).lazy() + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*Id;
  }

  num = U + V;			// numerator of Pade approximant
  den = -U + V;			// denominator of Pade approximant
  den.lu().solve(num, result);

  // Undo scaling by repeated squaring
  for (int i=0; i<squarings; i++)
    *result *= *result;
}

#endif // EIGEN_MATRIX_EXPONENTIAL