aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
blob: 079e886020b959bdd7ee8289cd9f497296d01fb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

namespace Eigen { 

namespace internal {

  // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
  // Copyright 2003-2009 Mark Borgerding

template <typename _Scalar>
struct kiss_cpx_fft
{
  typedef _Scalar Scalar;
  typedef std::complex<Scalar> Complex;
  std::vector<Complex> m_twiddles;
  std::vector<int> m_stageRadix;
  std::vector<int> m_stageRemainder;
  std::vector<Complex> m_scratchBuf;
  bool m_inverse;

  inline
    void make_twiddles(int nfft,bool inverse)
    {
      using std::acos;
      m_inverse = inverse;
      m_twiddles.resize(nfft);
      Scalar phinc =  (inverse?2:-2)* acos( (Scalar) -1)  / nfft;
      for (int i=0;i<nfft;++i)
        m_twiddles[i] = exp( Complex(0,i*phinc) );
    }

  void factorize(int nfft)
  {
    //start factoring out 4's, then 2's, then 3,5,7,9,...
    int n= nfft;
    int p=4;
    do {
      while (n % p) {
        switch (p) {
          case 4: p = 2; break;
          case 2: p = 3; break;
          default: p += 2; break;
        }
        if (p*p>n)
          p=n;// impossible to have a factor > sqrt(n)
      }
      n /= p;
      m_stageRadix.push_back(p);
      m_stageRemainder.push_back(n);
      if ( p > 5 )
        m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
    }while(n>1);
  }

  template <typename _Src>
    inline
    void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
    {
      int p = m_stageRadix[stage];
      int m = m_stageRemainder[stage];
      Complex * Fout_beg = xout;
      Complex * Fout_end = xout + p*m;

      if (m>1) {
        do{
          // recursive call:
          // DFT of size m*p performed by doing
          // p instances of smaller DFTs of size m, 
          // each one takes a decimated version of the input
          work(stage+1, xout , xin, fstride*p,in_stride);
          xin += fstride*in_stride;
        }while( (xout += m) != Fout_end );
      }else{
        do{
          *xout = *xin;
          xin += fstride*in_stride;
        }while(++xout != Fout_end );
      }
      xout=Fout_beg;

      // recombine the p smaller DFTs 
      switch (p) {
        case 2: bfly2(xout,fstride,m); break;
        case 3: bfly3(xout,fstride,m); break;
        case 4: bfly4(xout,fstride,m); break;
        case 5: bfly5(xout,fstride,m); break;
        default: bfly_generic(xout,fstride,m,p); break;
      }
    }

  inline
    void bfly2( Complex * Fout, const size_t fstride, int m)
    {
      for (int k=0;k<m;++k) {
        Complex t = Fout[m+k] * m_twiddles[k*fstride];
        Fout[m+k] = Fout[k] - t;
        Fout[k] += t;
      }
    }

  inline
    void bfly4( Complex * Fout, const size_t fstride, const size_t m)
    {
      Complex scratch[6];
      int negative_if_inverse = m_inverse * -2 +1;
      for (size_t k=0;k<m;++k) {
        scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
        scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
        scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
        scratch[5] = Fout[k] - scratch[1];

        Fout[k] += scratch[1];
        scratch[3] = scratch[0] + scratch[2];
        scratch[4] = scratch[0] - scratch[2];
        scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );

        Fout[k+2*m]  = Fout[k] - scratch[3];
        Fout[k] += scratch[3];
        Fout[k+m] = scratch[5] + scratch[4];
        Fout[k+3*m] = scratch[5] - scratch[4];
      }
    }

  inline
    void bfly3( Complex * Fout, const size_t fstride, const size_t m)
    {
      size_t k=m;
      const size_t m2 = 2*m;
      Complex *tw1,*tw2;
      Complex scratch[5];
      Complex epi3;
      epi3 = m_twiddles[fstride*m];

      tw1=tw2=&m_twiddles[0];

      do{
        scratch[1]=Fout[m] * *tw1;
        scratch[2]=Fout[m2] * *tw2;

        scratch[3]=scratch[1]+scratch[2];
        scratch[0]=scratch[1]-scratch[2];
        tw1 += fstride;
        tw2 += fstride*2;
        Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
        scratch[0] *= epi3.imag();
        *Fout += scratch[3];
        Fout[m2] = Complex(  Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
        Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
        ++Fout;
      }while(--k);
    }

  inline
    void bfly5( Complex * Fout, const size_t fstride, const size_t m)
    {
      Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
      size_t u;
      Complex scratch[13];
      Complex * twiddles = &m_twiddles[0];
      Complex *tw;
      Complex ya,yb;
      ya = twiddles[fstride*m];
      yb = twiddles[fstride*2*m];

      Fout0=Fout;
      Fout1=Fout0+m;
      Fout2=Fout0+2*m;
      Fout3=Fout0+3*m;
      Fout4=Fout0+4*m;

      tw=twiddles;
      for ( u=0; u<m; ++u ) {
        scratch[0] = *Fout0;

        scratch[1]  = *Fout1 * tw[u*fstride];
        scratch[2]  = *Fout2 * tw[2*u*fstride];
        scratch[3]  = *Fout3 * tw[3*u*fstride];
        scratch[4]  = *Fout4 * tw[4*u*fstride];

        scratch[7] = scratch[1] + scratch[4];
        scratch[10] = scratch[1] - scratch[4];
        scratch[8] = scratch[2] + scratch[3];
        scratch[9] = scratch[2] - scratch[3];

        *Fout0 +=  scratch[7];
        *Fout0 +=  scratch[8];

        scratch[5] = scratch[0] + Complex(
            (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
            (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
            );

        scratch[6] = Complex(
            (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
            -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
            );

        *Fout1 = scratch[5] - scratch[6];
        *Fout4 = scratch[5] + scratch[6];

        scratch[11] = scratch[0] +
          Complex(
              (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
              (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
              );

        scratch[12] = Complex(
            -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
            (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
            );

        *Fout2=scratch[11]+scratch[12];
        *Fout3=scratch[11]-scratch[12];

        ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
      }
    }

  /* perform the butterfly for one stage of a mixed radix FFT */
  inline
    void bfly_generic(
        Complex * Fout,
        const size_t fstride,
        int m,
        int p
        )
    {
      int u,k,q1,q;
      Complex * twiddles = &m_twiddles[0];
      Complex t;
      int Norig = static_cast<int>(m_twiddles.size());
      Complex * scratchbuf = &m_scratchBuf[0];

      for ( u=0; u<m; ++u ) {
        k=u;
        for ( q1=0 ; q1<p ; ++q1 ) {
          scratchbuf[q1] = Fout[ k  ];
          k += m;
        }

        k=u;
        for ( q1=0 ; q1<p ; ++q1 ) {
          int twidx=0;
          Fout[ k ] = scratchbuf[0];
          for (q=1;q<p;++q ) {
            twidx += static_cast<int>(fstride) * k;
            if (twidx>=Norig) twidx-=Norig;
            t=scratchbuf[q] * twiddles[twidx];
            Fout[ k ] += t;
          }
          k += m;
        }
      }
    }
};

template <typename _Scalar>
struct kissfft_impl
{
  typedef _Scalar Scalar;
  typedef std::complex<Scalar> Complex;

  void clear() 
  {
    m_plans.clear();
    m_realTwiddles.clear();
  }

  inline
    void fwd( Complex * dst,const Complex *src,int nfft)
    {
      get_plan(nfft,false).work(0, dst, src, 1,1);
    }

  inline
    void fwd2( Complex * dst,const Complex *src,int n0,int n1)
    {
        EIGEN_UNUSED_VARIABLE(dst);
        EIGEN_UNUSED_VARIABLE(src);
        EIGEN_UNUSED_VARIABLE(n0);
        EIGEN_UNUSED_VARIABLE(n1);
    }

  inline
    void inv2( Complex * dst,const Complex *src,int n0,int n1)
    {
        EIGEN_UNUSED_VARIABLE(dst);
        EIGEN_UNUSED_VARIABLE(src);
        EIGEN_UNUSED_VARIABLE(n0);
        EIGEN_UNUSED_VARIABLE(n1);
    }

  // real-to-complex forward FFT
  // perform two FFTs of src even and src odd
  // then twiddle to recombine them into the half-spectrum format
  // then fill in the conjugate symmetric half
  inline
    void fwd( Complex * dst,const Scalar * src,int nfft) 
    {
      if ( nfft&3  ) {
        // use generic mode for odd
        m_tmpBuf1.resize(nfft);
        get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
        std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
      }else{
        int ncfft = nfft>>1;
        int ncfft2 = nfft>>2;
        Complex * rtw = real_twiddles(ncfft2);

        // use optimized mode for even real
        fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
        Complex dc(dst[0].real() +  dst[0].imag());
        Complex nyquist(dst[0].real() -  dst[0].imag());
        int k;
        for ( k=1;k <= ncfft2 ; ++k ) {
          Complex fpk = dst[k];
          Complex fpnk = conj(dst[ncfft-k]);
          Complex f1k = fpk + fpnk;
          Complex f2k = fpk - fpnk;
          Complex tw= f2k * rtw[k-1];
          dst[k] =  (f1k + tw) * Scalar(.5);
          dst[ncfft-k] =  conj(f1k -tw)*Scalar(.5);
        }
        dst[0] = dc;
        dst[ncfft] = nyquist;
      }
    }

  // inverse complex-to-complex
  inline
    void inv(Complex * dst,const Complex  *src,int nfft)
    {
      get_plan(nfft,true).work(0, dst, src, 1,1);
    }

  // half-complex to scalar
  inline
    void inv( Scalar * dst,const Complex * src,int nfft) 
    {
      if (nfft&3) {
        m_tmpBuf1.resize(nfft);
        m_tmpBuf2.resize(nfft);
        std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
        for (int k=1;k<(nfft>>1)+1;++k)
          m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
        inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
        for (int k=0;k<nfft;++k)
          dst[k] = m_tmpBuf2[k].real();
      }else{
        // optimized version for multiple of 4
        int ncfft = nfft>>1;
        int ncfft2 = nfft>>2;
        Complex * rtw = real_twiddles(ncfft2);
        m_tmpBuf1.resize(ncfft);
        m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
        for (int k = 1; k <= ncfft / 2; ++k) {
          Complex fk = src[k];
          Complex fnkc = conj(src[ncfft-k]);
          Complex fek = fk + fnkc;
          Complex tmp = fk - fnkc;
          Complex fok = tmp * conj(rtw[k-1]);
          m_tmpBuf1[k] = fek + fok;
          m_tmpBuf1[ncfft-k] = conj(fek - fok);
        }
        get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
      }
    }

  protected:
  typedef kiss_cpx_fft<Scalar> PlanData;
  typedef std::map<int,PlanData> PlanMap;

  PlanMap m_plans;
  std::map<int, std::vector<Complex> > m_realTwiddles;
  std::vector<Complex> m_tmpBuf1;
  std::vector<Complex> m_tmpBuf2;

  inline
    int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }

  inline
    PlanData & get_plan(int nfft, bool inverse)
    {
      // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
      PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
      if ( pd.m_twiddles.size() == 0 ) {
        pd.make_twiddles(nfft,inverse);
        pd.factorize(nfft);
      }
      return pd;
    }

  inline
    Complex * real_twiddles(int ncfft2)
    {
      using std::acos;
      std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
      if ( (int)twidref.size() != ncfft2 ) {
        twidref.resize(ncfft2);
        int ncfft= ncfft2<<1;
        Scalar pi =  acos( Scalar(-1) );
        for (int k=1;k<=ncfft2;++k) 
          twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
      }
      return &twidref[0];
    }
};

} // end namespace internal

} // end namespace Eigen

/* vim: set filetype=cpp et sw=2 ts=2 ai: */