aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/EulerAngles/EulerAngles.h
blob: a5d034d71eb11020c17ca1c02a1be54b0a887d10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
#define EIGEN_EULERANGLESCLASS_H

namespace Eigen
{
  /** \class EulerAngles
    *
    * \ingroup EulerAngles_Module
    *
    * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
    *
    * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
    * 
    * Here is how intrinsic Euler angles works:
    *  - first, rotate the axes system over the alpha axis in angle alpha
    *  - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
    *  - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
    *
    * \note This class support only intrinsic Euler angles for simplicity,
    *  see EulerSystem how to easily overcome this for extrinsic systems.
    *
    * ### Rotation representation and conversions ###
    *
    * It has been proved(see Wikipedia link below) that every rotation can be represented
    *  by Euler angles, but there is no single representation (e.g. unlike rotation matrices).
    * Therefore, you can convert from Eigen rotation and to them
    *  (including rotation matrices, which is not called "rotations" by Eigen design).
    *
    * Euler angles usually used for:
    *  - convenient human representation of rotation, especially in interactive GUI.
    *  - gimbal systems and robotics
    *  - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
    *
    * However, Euler angles are slow comparing to quaternion or matrices,
    *  because their unnatural math definition, although it's simple for human.
    * To overcome this, this class provide easy movement from the math friendly representation
    *  to the human friendly representation, and vise-versa.
    *
    * All the user need to do is a safe simple C++ type conversion,
    *  and this class take care for the math.
    * Additionally, some axes related computation is done in compile time.
    *
    * #### Euler angles ranges in conversions ####
    * Rotations representation as EulerAngles are not single (unlike matrices),
    *  and even have infinite EulerAngles representations.<BR>
    * For example, add or subtract 2*PI from either angle of EulerAngles
    *  and you'll get the same rotation.
    * This is the general reason for infinite representation,
    *  but it's not the only general reason for not having a single representation.
    *
    * When converting rotation to EulerAngles, this class convert it to specific ranges
    * When converting some rotation to EulerAngles, the rules for ranges are as follow:
    * - If the rotation we converting from is an EulerAngles
    *  (even when it represented as RotationBase explicitly), angles ranges are __undefined__.
    * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
    *   As for Beta angle:
    *    - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
    *    - otherwise:
    *      - If the beta axis is positive, the beta angle will be in the range [0, PI]
    *      - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
    *
    * \sa EulerAngles(const MatrixBase<Derived>&)
    * \sa EulerAngles(const RotationBase<Derived, 3>&)
    *
    * ### Convenient user typedefs ###
    *
    * Convenient typedefs for EulerAngles exist for float and double scalar,
    *  in a form of EulerAngles{A}{B}{C}{scalar},
    *  e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
    *
    * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
    * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
    *  a word that represent what you need.
    *
    * ### Example ###
    *
    * \include EulerAngles.cpp
    * Output: \verbinclude EulerAngles.out
    *
    * ### Additional reading ###
    *
    * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
    *
    * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
    *
    * \tparam _Scalar the scalar type, i.e. the type of the angles.
    *
    * \tparam _System the EulerSystem to use, which represents the axes of rotation.
    */
  template <typename _Scalar, class _System>
  class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
  {
    public:
      typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base;
      
      /** the scalar type of the angles */
      typedef _Scalar Scalar;
      typedef typename NumTraits<Scalar>::Real RealScalar;
      
      /** the EulerSystem to use, which represents the axes of rotation. */
      typedef _System System;
    
      typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
      typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
      typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
      typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
      
      /** \returns the axis vector of the first (alpha) rotation */
      static Vector3 AlphaAxisVector() {
        const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
        return System::IsAlphaOpposite ? -u : u;
      }
      
      /** \returns the axis vector of the second (beta) rotation */
      static Vector3 BetaAxisVector() {
        const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
        return System::IsBetaOpposite ? -u : u;
      }
      
      /** \returns the axis vector of the third (gamma) rotation */
      static Vector3 GammaAxisVector() {
        const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
        return System::IsGammaOpposite ? -u : u;
      }

    private:
      Vector3 m_angles;

    public:
      /** Default constructor without initialization. */
      EulerAngles() {}
      /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */
      EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
        m_angles(alpha, beta, gamma) {}
      
      // TODO: Test this constructor
      /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */
      explicit EulerAngles(const Scalar* data) : m_angles(data) {}
      
      /** Constructs and initializes an EulerAngles from either:
        *  - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
        *  - a 3D vector expression representing Euler angles.
        *
        * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR>
        *  Alpha and gamma angles will be in the range [-PI, PI].<BR>
        *  As for Beta angle:
        *   - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
        *   - otherwise:
        *     - If the beta axis is positive, the beta angle will be in the range [0, PI]
        *     - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
       */
      template<typename Derived>
      explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; }
      
      /** Constructs and initialize Euler angles from a rotation \p rot.
        *
        * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly),
        *  angles ranges are __undefined__.
        *  Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
        *  As for Beta angle:
        *   - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
        *   - otherwise:
        *     - If the beta axis is positive, the beta angle will be in the range [0, PI]
        *     - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
      */
      template<typename Derived>
      EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); }
      
      /*EulerAngles(const QuaternionType& q)
      {
        // TODO: Implement it in a faster way for quaternions
        // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
        //  we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
        // Currently we compute all matrix cells from quaternion.

        // Special case only for ZYX
        //Scalar y2 = q.y() * q.y();
        //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
        //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
        //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
      }*/

      /** \returns The angle values stored in a vector (alpha, beta, gamma). */
      const Vector3& angles() const { return m_angles; }
      /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
      Vector3& angles() { return m_angles; }

      /** \returns The value of the first angle. */
      Scalar alpha() const { return m_angles[0]; }
      /** \returns A read-write reference to the angle of the first angle. */
      Scalar& alpha() { return m_angles[0]; }

      /** \returns The value of the second angle. */
      Scalar beta() const { return m_angles[1]; }
      /** \returns A read-write reference to the angle of the second angle. */
      Scalar& beta() { return m_angles[1]; }

      /** \returns The value of the third angle. */
      Scalar gamma() const { return m_angles[2]; }
      /** \returns A read-write reference to the angle of the third angle. */
      Scalar& gamma() { return m_angles[2]; }

      /** \returns The Euler angles rotation inverse (which is as same as the negative),
        *  (-alpha, -beta, -gamma).
      */
      EulerAngles inverse() const
      {
        EulerAngles res;
        res.m_angles = -m_angles;
        return res;
      }

      /** \returns The Euler angles rotation negative (which is as same as the inverse),
        *  (-alpha, -beta, -gamma).
      */
      EulerAngles operator -() const
      {
        return inverse();
      }
      
      /** Set \c *this from either:
        *  - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
        *  - a 3D vector expression representing Euler angles.
        *
        * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about
        *  angles ranges output.
      */
      template<class Derived>
      EulerAngles& operator=(const MatrixBase<Derived>& other)
      {
        EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value),
         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
        
        internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived());
        return *this;
      }

      // TODO: Assign and construct from another EulerAngles (with different system)
      
      /** Set \c *this from a rotation.
        *
        * See EulerAngles(const RotationBase<Derived, 3>&) for more information about
        *  angles ranges output.
      */
      template<typename Derived>
      EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
        System::CalcEulerAngles(*this, rot.toRotationMatrix());
        return *this;
      }
      
      /** \returns \c true if \c *this is approximately equal to \a other, within the precision
        * determined by \a prec.
        *
        * \sa MatrixBase::isApprox() */
      bool isApprox(const EulerAngles& other,
        const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
      { return angles().isApprox(other.angles(), prec); }

      /** \returns an equivalent 3x3 rotation matrix. */
      Matrix3 toRotationMatrix() const
      {
        // TODO: Calc it faster
        return static_cast<QuaternionType>(*this).toRotationMatrix();
      }

      /** Convert the Euler angles to quaternion. */
      operator QuaternionType() const
      {
        return
          AngleAxisType(alpha(), AlphaAxisVector()) *
          AngleAxisType(beta(), BetaAxisVector())   *
          AngleAxisType(gamma(), GammaAxisVector());
      }
      
      friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
      {
        s << eulerAngles.angles().transpose();
        return s;
      }
      
      /** \returns \c *this with scalar type casted to \a NewScalarType */
      template <typename NewScalarType>
      EulerAngles<NewScalarType, System> cast() const
      {
        EulerAngles<NewScalarType, System> e;
        e.angles() = angles().template cast<NewScalarType>();
        return e;
      }
  };

#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
  /** \ingroup EulerAngles_Module */ \
  typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;

#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
 \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
 \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
  EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)

EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
EIGEN_EULER_ANGLES_TYPEDEFS(double, d)

  namespace internal
  {
    template<typename _Scalar, class _System>
    struct traits<EulerAngles<_Scalar, _System> >
    {
      typedef _Scalar Scalar;
    };
    
    // set from a rotation matrix
    template<class System, class Other>
    struct eulerangles_assign_impl<System,Other,3,3>
    {
      typedef typename Other::Scalar Scalar;
      static void run(EulerAngles<Scalar, System>& e, const Other& m)
      {
        System::CalcEulerAngles(e, m);
      }
    };
    
    // set from a vector of Euler angles
    template<class System, class Other>
    struct eulerangles_assign_impl<System,Other,4,1>
    {
      typedef typename Other::Scalar Scalar;
      static void run(EulerAngles<Scalar, System>& e, const Other& vec)
      {
        e.angles() = vec;
      }
    };
  }
}

#endif // EIGEN_EULERANGLESCLASS_H