aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/BVH/BVAlgorithms.h
blob: 6cba656ff3bd428978ed02a3bb5a5fa8aa744799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_BVALGORITHMS_H
#define EIGEN_BVALGORITHMS_H

namespace Eigen { 

namespace internal {

#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename BVH, typename Intersector>
bool intersect_helper(const BVH &tree, Intersector &intersector, typename BVH::Index root)
{
  typedef typename BVH::Index Index;
  typedef typename BVH::VolumeIterator VolIter;
  typedef typename BVH::ObjectIterator ObjIter;

  VolIter vBegin = VolIter(), vEnd = VolIter();
  ObjIter oBegin = ObjIter(), oEnd = ObjIter();

  std::vector<Index> todo(1, root);

  while(!todo.empty()) {
    tree.getChildren(todo.back(), vBegin, vEnd, oBegin, oEnd);
    todo.pop_back();

    for(; vBegin != vEnd; ++vBegin) //go through child volumes
      if(intersector.intersectVolume(tree.getVolume(*vBegin)))
        todo.push_back(*vBegin);

    for(; oBegin != oEnd; ++oBegin) //go through child objects
      if(intersector.intersectObject(*oBegin))
        return true; //intersector said to stop query
  }
  return false;
}
#endif //not EIGEN_PARSED_BY_DOXYGEN

template<typename Volume1, typename Object1, typename Object2, typename Intersector>
struct intersector_helper1
{
  intersector_helper1(const Object2 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
  bool intersectVolume(const Volume1 &vol) { return intersector.intersectVolumeObject(vol, stored); }
  bool intersectObject(const Object1 &obj) { return intersector.intersectObjectObject(obj, stored); }
  Object2 stored;
  Intersector &intersector;
private:
  intersector_helper1& operator=(const intersector_helper1&);
};

template<typename Volume2, typename Object2, typename Object1, typename Intersector>
struct intersector_helper2
{
  intersector_helper2(const Object1 &inStored, Intersector &in) : stored(inStored), intersector(in) {}
  bool intersectVolume(const Volume2 &vol) { return intersector.intersectObjectVolume(stored, vol); }
  bool intersectObject(const Object2 &obj) { return intersector.intersectObjectObject(stored, obj); }
  Object1 stored;
  Intersector &intersector;
private:
  intersector_helper2& operator=(const intersector_helper2&);
};

} // end namespace internal

/**  Given a BVH, runs the query encapsulated by \a intersector.
  *  The Intersector type must provide the following members: \code
     bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
     bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately
  \endcode
  */
template<typename BVH, typename Intersector>
void BVIntersect(const BVH &tree, Intersector &intersector)
{
  internal::intersect_helper(tree, intersector, tree.getRootIndex());
}

/**  Given two BVH's, runs the query on their Cartesian product encapsulated by \a intersector.
  *  The Intersector type must provide the following members: \code
     bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
     bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
     bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
     bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately
  \endcode
  */
template<typename BVH1, typename BVH2, typename Intersector>
void BVIntersect(const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector) //TODO: tandem descent when it makes sense
{
  typedef typename BVH1::Index Index1;
  typedef typename BVH2::Index Index2;
  typedef internal::intersector_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Intersector> Helper1;
  typedef internal::intersector_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Intersector> Helper2;
  typedef typename BVH1::VolumeIterator VolIter1;
  typedef typename BVH1::ObjectIterator ObjIter1;
  typedef typename BVH2::VolumeIterator VolIter2;
  typedef typename BVH2::ObjectIterator ObjIter2;

  VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
  ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
  VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
  ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();

  std::vector<std::pair<Index1, Index2> > todo(1, std::make_pair(tree1.getRootIndex(), tree2.getRootIndex()));

  while(!todo.empty()) {
    tree1.getChildren(todo.back().first, vBegin1, vEnd1, oBegin1, oEnd1);
    tree2.getChildren(todo.back().second, vBegin2, vEnd2, oBegin2, oEnd2);
    todo.pop_back();

    for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
      const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
      for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
        if(intersector.intersectVolumeVolume(vol1, tree2.getVolume(*vCur2)))
          todo.push_back(std::make_pair(*vBegin1, *vCur2));
      }

      for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
        Helper1 helper(*oCur2, intersector);
        if(internal::intersect_helper(tree1, helper, *vBegin1))
          return; //intersector said to stop query
      }
    }

    for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
      for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
        Helper2 helper(*oBegin1, intersector);
        if(internal::intersect_helper(tree2, helper, *vCur2))
          return; //intersector said to stop query
      }

      for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
        if(intersector.intersectObjectObject(*oBegin1, *oCur2))
          return; //intersector said to stop query
      }
    }
  }
}

namespace internal {

#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename BVH, typename Minimizer>
typename Minimizer::Scalar minimize_helper(const BVH &tree, Minimizer &minimizer, typename BVH::Index root, typename Minimizer::Scalar minimum)
{
  typedef typename Minimizer::Scalar Scalar;
  typedef typename BVH::Index Index;
  typedef std::pair<Scalar, Index> QueueElement; //first element is priority
  typedef typename BVH::VolumeIterator VolIter;
  typedef typename BVH::ObjectIterator ObjIter;

  VolIter vBegin = VolIter(), vEnd = VolIter();
  ObjIter oBegin = ObjIter(), oEnd = ObjIter();
  std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top

  todo.push(std::make_pair(Scalar(), root));

  while(!todo.empty()) {
    tree.getChildren(todo.top().second, vBegin, vEnd, oBegin, oEnd);
    todo.pop();

    for(; oBegin != oEnd; ++oBegin) //go through child objects
      minimum = (std::min)(minimum, minimizer.minimumOnObject(*oBegin));

    for(; vBegin != vEnd; ++vBegin) { //go through child volumes
      Scalar val = minimizer.minimumOnVolume(tree.getVolume(*vBegin));
      if(val < minimum)
        todo.push(std::make_pair(val, *vBegin));
    }
  }

  return minimum;
}
#endif //not EIGEN_PARSED_BY_DOXYGEN


template<typename Volume1, typename Object1, typename Object2, typename Minimizer>
struct minimizer_helper1
{
  typedef typename Minimizer::Scalar Scalar;
  minimizer_helper1(const Object2 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
  Scalar minimumOnVolume(const Volume1 &vol) { return minimizer.minimumOnVolumeObject(vol, stored); }
  Scalar minimumOnObject(const Object1 &obj) { return minimizer.minimumOnObjectObject(obj, stored); }
  Object2 stored;
  Minimizer &minimizer;
private:
  minimizer_helper1& operator=(const minimizer_helper1&) {}
};

template<typename Volume2, typename Object2, typename Object1, typename Minimizer>
struct minimizer_helper2
{
  typedef typename Minimizer::Scalar Scalar;
  minimizer_helper2(const Object1 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {}
  Scalar minimumOnVolume(const Volume2 &vol) { return minimizer.minimumOnObjectVolume(stored, vol); }
  Scalar minimumOnObject(const Object2 &obj) { return minimizer.minimumOnObjectObject(stored, obj); }
  Object1 stored;
  Minimizer &minimizer;
private:
  minimizer_helper2& operator=(const minimizer_helper2&);
};

} // end namespace internal

/**  Given a BVH, runs the query encapsulated by \a minimizer.
  *  \returns the minimum value.
  *  The Minimizer type must provide the following members: \code
     typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
     Scalar minimumOnVolume(const BVH::Volume &volume)
     Scalar minimumOnObject(const BVH::Object &object)
  \endcode
  */
template<typename BVH, typename Minimizer>
typename Minimizer::Scalar BVMinimize(const BVH &tree, Minimizer &minimizer)
{
  return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)());
}

/**  Given two BVH's, runs the query on their cartesian product encapsulated by \a minimizer.
  *  \returns the minimum value.
  *  The Minimizer type must provide the following members: \code
     typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
     Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
     Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
     Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
     Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)
  \endcode
  */
template<typename BVH1, typename BVH2, typename Minimizer>
typename Minimizer::Scalar BVMinimize(const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
{
  typedef typename Minimizer::Scalar Scalar;
  typedef typename BVH1::Index Index1;
  typedef typename BVH2::Index Index2;
  typedef internal::minimizer_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Minimizer> Helper1;
  typedef internal::minimizer_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Minimizer> Helper2;
  typedef std::pair<Scalar, std::pair<Index1, Index2> > QueueElement; //first element is priority
  typedef typename BVH1::VolumeIterator VolIter1;
  typedef typename BVH1::ObjectIterator ObjIter1;
  typedef typename BVH2::VolumeIterator VolIter2;
  typedef typename BVH2::ObjectIterator ObjIter2;

  VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
  ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
  VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
  ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
  std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top

  Scalar minimum = (std::numeric_limits<Scalar>::max)();
  todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())));

  while(!todo.empty()) {
    tree1.getChildren(todo.top().second.first, vBegin1, vEnd1, oBegin1, oEnd1);
    tree2.getChildren(todo.top().second.second, vBegin2, vEnd2, oBegin2, oEnd2);
    todo.pop();

    for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
      for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
        minimum = (std::min)(minimum, minimizer.minimumOnObjectObject(*oBegin1, *oCur2));
      }

      for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
        Helper2 helper(*oBegin1, minimizer);
        minimum = (std::min)(minimum, internal::minimize_helper(tree2, helper, *vCur2, minimum));
      }
    }

    for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
      const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);

      for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
        Helper1 helper(*oCur2, minimizer);
        minimum = (std::min)(minimum, internal::minimize_helper(tree1, helper, *vBegin1, minimum));
      }

      for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
        Scalar val = minimizer.minimumOnVolumeVolume(vol1, tree2.getVolume(*vCur2));
        if(val < minimum)
          todo.push(std::make_pair(val, std::make_pair(*vBegin1, *vCur2)));
      }
    }
  }
  return minimum;
}

} // end namespace Eigen

#endif // EIGEN_BVALGORITHMS_H